Home Backend Development Golang Golang and RabbitMQ realize the design and implementation of event-driven large-scale data processing system

Golang and RabbitMQ realize the design and implementation of event-driven large-scale data processing system

Sep 28, 2023 pm 05:18 PM
golang rabbitmq event driven

Golang and RabbitMQ realize the design and implementation of event-driven large-scale data processing system

Golang and RabbitMQ realize the design and implementation of event-driven large-scale data processing system

Foreword:
With the advent of the big data era, processing massive data has become a challenge faced by many businesses. In order to process this data efficiently, it is often necessary to adopt an event-driven architecture to build a data processing system. This article introduces how to use Golang and RabbitMQ to design and implement an event-driven large-scale data processing system, and provides specific code examples.

1. System Requirements Analysis
Suppose we need to build a real-time log processing system that can accept a large amount of log data and perform real-time processing and analysis. In order to meet this demand, we can divide the system into the following modules:

  1. Data collection module: responsible for collecting data from each log source and sending it to the message queue.
  2. Data processing module: Obtain data from the message queue and perform real-time processing and analysis.
  3. Data storage module: Store the processed data in the database for subsequent query and analysis.

2. System design

  1. Data collection module
    The data collection module is written in Golang and obtains data from various log sources through scheduled tasks or monitoring mechanisms. and send it to the RabbitMQ message queue. The following is a simple sample code:
package main

import (
    "log"
    "time"

    "github.com/streadway/amqp"
)

func main() {
    // 连接RabbitMQ
    conn, err := amqp.Dial("amqp://guest:guest@localhost:5672/")
    if err != nil {
        log.Fatalf("Failed to connect to RabbitMQ: %s", err)
    }
    defer conn.Close()

    // 创建一个通道
    ch, err := conn.Channel()
    if err != nil {
        log.Fatalf("Failed to open a channel: %s", err)
    }
    defer ch.Close()

    // 声明一个队列
    q, err := ch.QueueDeclare(
        "logs_queue", // 队列名称
        false,        // 是否持久化
        false,        // 是否自动删除非持久化的队列
        false,        // 是否具有排他性
        false,        // 是否等待服务器确认
        nil,          // 额外参数
    )
    if err != nil {
        log.Fatalf("Failed to declare a queue: %s", err)
    }

    // 模拟日志数据
    logData := []string{"log1", "log2", "log3"}

    // 将日志数据发送到队列中
    for _, data := range logData {
        err = ch.Publish(
            "",      // 交换器名称,使用默认交换器
            q.Name,  // 队列名称
            false,   // 是否立即发送
            false,   // 是否等待服务器确认
            amqp.Publishing{
                ContentType: "text/plain",
                Body:        []byte(data),
            })
        if err != nil {
            log.Fatalf("Failed to publish a message: %s", err)
        }
        log.Printf("Sent %s", data)
        time.Sleep(1 * time.Second)
    }

    log.Println("Finished sending log data")
}
Copy after login
  1. Data processing module
    The data processing module is also written in Golang and processes and analyzes it in real time by subscribing to data in the RabbitMQ message queue. The following is a simple sample code:
package main

import (
    "log"

    "github.com/streadway/amqp"
)

func main() {
    // 连接RabbitMQ
    conn, err := amqp.Dial("amqp://guest:guest@localhost:5672/")
    if err != nil {
        log.Fatalf("Failed to connect to RabbitMQ: %s", err)
    }
    defer conn.Close()

    // 创建一个通道
    ch, err := conn.Channel()
    if err != nil {
        log.Fatalf("Failed to open a channel: %s", err)
    }
    defer ch.Close()

    // 声明一个队列
    q, err := ch.QueueDeclare(
        "logs_queue", // 队列名称
        false,        // 是否持久化
        false,        // 是否自动删除非持久化的队列
        false,        // 是否具有排他性
        false,        // 是否等待服务器确认
        nil,          // 额外参数
    )
    if err != nil {
        log.Fatalf("Failed to declare a queue: %s", err)
    }

    // 消费队列中的数据
    msgs, err := ch.Consume(
        q.Name, // 队列名称
        "",     // 消费者标识符,由RabbitMQ自动生成
        true,   // 是否自动应答
        false,  // 是否具有每个消息的排他性
        false,  // 是否阻塞直到有消息返回
        false,  // 是否等待服务器确认
        nil,    // 额外参数
    )
    if err != nil {
        log.Fatalf("Failed to register a consumer: %s", err)
    }

    // 消费消息
    forever := make(chan bool)
    go func() {
        for d := range msgs {
            log.Printf("Received a message: %s", d.Body)
        }
    }()

    log.Println("Waiting for log data...")
    <-forever
}
Copy after login
  1. Data storage module
    The data storage module can use any suitable database to store processed data. Here, we use MySQL as the data storage engine. The following is a simple sample code:
package main

import (
    "database/sql"
    "log"

    _ "github.com/go-sql-driver/mysql"
)

func main() {
    // 连接MySQL
    db, err := sql.Open("mysql", "username:password@tcp(localhost:3306)/database")
    if err != nil {
        log.Fatalf("Failed to connect to MySQL: %s", err)
    }
    defer db.Close()

    // 创建日志数据表
    _, err = db.Exec("CREATE TABLE IF NOT EXISTS logs (id INT AUTO_INCREMENT PRIMARY KEY, message TEXT)")
    if err != nil {
        log.Fatalf("Failed to create table: %s", err)
    }

    // 模拟处理后的数据
    processedData := []string{"processed log1", "processed log2", "processed log3"}

    // 将处理后的数据存储到数据库中
    for _, data := range processedData {
        _, err = db.Exec("INSERT INTO logs (message) VALUES (?)", data)
        if err != nil {
            log.Fatalf("Failed to insert data into table: %s", err)
        }
        log.Printf("Inserted %s", data)
    }

    log.Println("Finished storing processed data")
}
Copy after login

3. System implementation and operation

  1. Install RabbitMQ and MySQL, and ensure that the service is running normally.
  2. Compile and run the data acquisition module, data processing module and data storage module respectively, ensuring that they are all running in order.
  3. The data collection module will simulate generating some log data and then send it to the RabbitMQ message queue.
  4. The data processing module will subscribe to data from the RabbitMQ message queue and process and analyze it in real time.
  5. The data storage module will store the processed data in the MySQL database.

Summary:
By using Golang and RabbitMQ, we can easily design and implement an event-driven large-scale data processing system. Golang's concurrency mechanism and efficient performance, as well as RabbitMQ's powerful messaging capabilities, provide us with a reliable and efficient solution. I hope this article will help you understand how to use Golang and RabbitMQ to build a large-scale data processing system.

The above is the detailed content of Golang and RabbitMQ realize the design and implementation of event-driven large-scale data processing system. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
Two Point Museum: All Exhibits And Where To Find Them
1 months ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to safely read and write files using Golang? How to safely read and write files using Golang? Jun 06, 2024 pm 05:14 PM

Reading and writing files safely in Go is crucial. Guidelines include: Checking file permissions Closing files using defer Validating file paths Using context timeouts Following these guidelines ensures the security of your data and the robustness of your application.

How to configure connection pool for Golang database connection? How to configure connection pool for Golang database connection? Jun 06, 2024 am 11:21 AM

How to configure connection pooling for Go database connections? Use the DB type in the database/sql package to create a database connection; set MaxOpenConns to control the maximum number of concurrent connections; set MaxIdleConns to set the maximum number of idle connections; set ConnMaxLifetime to control the maximum life cycle of the connection.

Comparison of advantages and disadvantages of golang framework Comparison of advantages and disadvantages of golang framework Jun 05, 2024 pm 09:32 PM

The Go framework stands out due to its high performance and concurrency advantages, but it also has some disadvantages, such as being relatively new, having a small developer ecosystem, and lacking some features. Additionally, rapid changes and learning curves can vary from framework to framework. The Gin framework is a popular choice for building RESTful APIs due to its efficient routing, built-in JSON support, and powerful error handling.

What are the best practices for error handling in Golang framework? What are the best practices for error handling in Golang framework? Jun 05, 2024 pm 10:39 PM

Best practices: Create custom errors using well-defined error types (errors package) Provide more details Log errors appropriately Propagate errors correctly and avoid hiding or suppressing Wrap errors as needed to add context

How to save JSON data to database in Golang? How to save JSON data to database in Golang? Jun 06, 2024 am 11:24 AM

JSON data can be saved into a MySQL database by using the gjson library or the json.Unmarshal function. The gjson library provides convenience methods to parse JSON fields, and the json.Unmarshal function requires a target type pointer to unmarshal JSON data. Both methods require preparing SQL statements and performing insert operations to persist the data into the database.

How to solve common security problems in golang framework? How to solve common security problems in golang framework? Jun 05, 2024 pm 10:38 PM

How to address common security issues in the Go framework With the widespread adoption of the Go framework in web development, ensuring its security is crucial. The following is a practical guide to solving common security problems, with sample code: 1. SQL Injection Use prepared statements or parameterized queries to prevent SQL injection attacks. For example: constquery="SELECT*FROMusersWHEREusername=?"stmt,err:=db.Prepare(query)iferr!=nil{//Handleerror}err=stmt.QueryR

Golang framework vs. Go framework: Comparison of internal architecture and external features Golang framework vs. Go framework: Comparison of internal architecture and external features Jun 06, 2024 pm 12:37 PM

The difference between the GoLang framework and the Go framework is reflected in the internal architecture and external features. The GoLang framework is based on the Go standard library and extends its functionality, while the Go framework consists of independent libraries to achieve specific purposes. The GoLang framework is more flexible and the Go framework is easier to use. The GoLang framework has a slight advantage in performance, and the Go framework is more scalable. Case: gin-gonic (Go framework) is used to build REST API, while Echo (GoLang framework) is used to build web applications.

What are the common dependency management issues in the Golang framework? What are the common dependency management issues in the Golang framework? Jun 05, 2024 pm 07:27 PM

Common problems and solutions in Go framework dependency management: Dependency conflicts: Use dependency management tools, specify the accepted version range, and check for dependency conflicts. Vendor lock-in: Resolved by code duplication, GoModulesV2 file locking, or regular cleaning of the vendor directory. Security vulnerabilities: Use security auditing tools, choose reputable providers, monitor security bulletins and keep dependencies updated.

See all articles