


Build a scalable Select Channels Go concurrent programming solution with golang
Build a scalable Select Channels Go concurrent programming solution through golang
Abstract:
With the development of computer technology and the growth of needs, writing concurrency Procedures are becoming increasingly important. Go language is a powerful concurrent programming language that uses goroutines and channels to achieve concurrency. In this article, we'll show you how to build a scalable concurrent programming solution that can handle large-scale concurrency situations.
Introduction:
The goroutine and channel in the Go language make concurrent programming very simple. Goroutine is a lightweight thread that can run concurrently with other goroutines. A channel is a data structure used to pass data between goroutines. Using goroutines and channels, efficient concurrent programming can be achieved.
However, when concurrent tasks become huge, just using goroutine and channel may not be able to meet the needs. Therefore, we need a scalable solution to handle high concurrency scenarios. In the following examples, we show how to use golang to build scalable concurrent programming solutions.
Sample code:
package main import ( "fmt" "sync" ) func main() { // 创建一个计数器,用于记录完成的任务数 var counter int var wg sync.WaitGroup // 创建一个buffered channel,用于接收任务 taskChan := make(chan int, 100) // 开始协程来处理任务 for i := 0; i < 10000; i++ { wg.Add(1) go func() { // 从channel中接收任务 task := <-taskChan // 执行任务 doTask(task) // 增加计数器 counter++ // 任务执行完毕后通知WaitGroup wg.Done() }() } // 向channel中发送任务 for i := 0; i < 10000; i++ { taskChan <- i } // 等待所有任务执行完毕 wg.Wait() // 输出完成的任务数 fmt.Println("Total tasks:", counter) } func doTask(task int) { // 模拟任务执行时间 for i := 0; i < 10000000; i++ { _ = i } }
The above code uses a buffered channel to store tasks, and uses a counter and WaitGroup to record the number of completed tasks. Start 10,000 coroutines in the main coroutine to process tasks, and notify the WaitGroup after the task is completed.
In addition to the code in the above examples, there are other techniques that can be used to build more powerful and scalable concurrent programming solutions. For example, you can use the worker pool mode to handle concurrent tasks, you can use technology to limit the number of concurrencies to control the degree of concurrency, you can use distributed computing to handle large-scale tasks, and so on.
Conclusion:
By using golang's goroutine and channel, we can easily build concurrent programming solutions. However, when faced with massive concurrency, we need a scalable solution. The sample code in this article shows how to use golang to build scalable concurrent programming solutions, and it also introduces some other techniques to handle more complex concurrency scenarios. I hope this article was helpful in understanding concurrent programming and building scalable concurrent solutions.
The above is the detailed content of Build a scalable Select Channels Go concurrent programming solution with golang. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Reading and writing files safely in Go is crucial. Guidelines include: Checking file permissions Closing files using defer Validating file paths Using context timeouts Following these guidelines ensures the security of your data and the robustness of your application.

How to configure connection pooling for Go database connections? Use the DB type in the database/sql package to create a database connection; set MaxOpenConns to control the maximum number of concurrent connections; set MaxIdleConns to set the maximum number of idle connections; set ConnMaxLifetime to control the maximum life cycle of the connection.

JSON data can be saved into a MySQL database by using the gjson library or the json.Unmarshal function. The gjson library provides convenience methods to parse JSON fields, and the json.Unmarshal function requires a target type pointer to unmarshal JSON data. Both methods require preparing SQL statements and performing insert operations to persist the data into the database.

The difference between the GoLang framework and the Go framework is reflected in the internal architecture and external features. The GoLang framework is based on the Go standard library and extends its functionality, while the Go framework consists of independent libraries to achieve specific purposes. The GoLang framework is more flexible and the Go framework is easier to use. The GoLang framework has a slight advantage in performance, and the Go framework is more scalable. Case: gin-gonic (Go framework) is used to build REST API, while Echo (GoLang framework) is used to build web applications.

The FindStringSubmatch function finds the first substring matched by a regular expression: the function returns a slice containing the matching substring, with the first element being the entire matched string and subsequent elements being individual substrings. Code example: regexp.FindStringSubmatch(text,pattern) returns a slice of matching substrings. Practical case: It can be used to match the domain name in the email address, for example: email:="user@example.com", pattern:=@([^\s]+)$ to get the domain name match[1].

Backend learning path: The exploration journey from front-end to back-end As a back-end beginner who transforms from front-end development, you already have the foundation of nodejs,...

Using predefined time zones in Go includes the following steps: Import the "time" package. Load a specific time zone through the LoadLocation function. Use the loaded time zone in operations such as creating Time objects, parsing time strings, and performing date and time conversions. Compare dates using different time zones to illustrate the application of the predefined time zone feature.

Go framework development FAQ: Framework selection: Depends on application requirements and developer preferences, such as Gin (API), Echo (extensible), Beego (ORM), Iris (performance). Installation and use: Use the gomod command to install, import the framework and use it. Database interaction: Use ORM libraries, such as gorm, to establish database connections and operations. Authentication and authorization: Use session management and authentication middleware such as gin-contrib/sessions. Practical case: Use the Gin framework to build a simple blog API that provides POST, GET and other functions.
