


Design and implementation of recommendation system based on Elasticsearch in PHP
Design and implementation of recommendation system based on Elasticsearch in PHP
With the development of the Internet, recommendation systems have become a must for various e-commerce platforms, news media and social networks Preparation function. The goal of the recommendation system is to provide users with targeted recommended content based on their personalized preferences to improve user experience and platform profitability. In this article, I will introduce how to build an efficient and accurate recommendation system based on Elasticsearch and provide specific code examples.
1. Principle of recommendation system
The core principle of the recommendation system is to establish the relationship between the user and the product based on the user's behavioral data (such as clicks, purchases, ratings, etc.), and then Recommend relevant products to users based on these relationships. Among them, commonly used recommendation algorithms include collaborative filtering algorithms, content-based recommendation algorithms, and deep learning algorithms.
2. Introduction to Elasticsearch
Elasticsearch is a distributed full-text search engine that uses an inverted index to achieve fast full-text search. In addition to basic full-text search capabilities, Elasticsearch also has strong scalability and scalability, and can be used as the underlying storage and computing engine of recommendation systems.
3. Design and implementation of recommendation system
- Data preparation
First, we need to prepare user behavior data and product data. User behavior data can include users' click records, purchase records, and rating records, etc., while product data can include product attributes, labels, and other related information.
- Data import into Elasticsearch
Import the prepared data into Elasticsearch for subsequent indexing and retrieval operations. You can use the RESTful API provided by Elasticsearch or the Elasticsearch client library of PHP to import data.
Sample code:
// 导入用户数据 $users = [ [ 'id' => 1, 'name' => 'user1', 'age' => 20, ], [ 'id' => 2, 'name' => 'user2', 'age' => 25, ], ]; foreach ($users as $user) { $params = [ 'index' => 'users', 'id' => $user['id'], 'body' => $user, ]; $response = $client->index($params); } // 导入商品数据 $products = [ [ 'id' => 1, 'name' => 'product1', 'price' => 100, ], [ 'id' => 2, 'name' => 'product2', 'price' => 200, ], ]; foreach ($products as $product) { $params = [ 'index' => 'products', 'id' => $product['id'], 'body' => $product, ]; $response = $client->index($params); }
- Build an index of users and products
Build an index of users and products based on user behavior data and product data for subsequent use recommended calculation. You can use the RESTful API provided by Elasticsearch or the Elasticsearch client library of PHP for indexing operations.
Sample code:
// 构建用户索引 $params = [ 'index' => 'users', 'body' => [ 'mappings' => [ 'properties' => [ 'name' => [ 'type' => 'text', ], 'age' => [ 'type' => 'integer', ], ], ], ], ]; $response = $client->indices()->create($params); // 构建商品索引 $params = [ 'index' => 'products', 'body' => [ 'mappings' => [ 'properties' => [ 'name' => [ 'type' => 'text', ], 'price' => [ 'type' => 'integer', ], ], ], ], ]; $response = $client->indices()->create($params);
- Calculate the relationship between users and products
Calculate the relationship between users and products based on user behavior data and product data relationships between. Collaborative filtering algorithms or other recommendation algorithms can be used here.
Sample code:
// 计算用户和商品之间的关联关系 $actions = [ [ 'index' => [ '_index' => 'interactions', '_id' => 1, ], ], [ 'user_id' => 1, 'product_id' => 1, 'timestamp' => '2021-01-01 00:00:00', ], [ 'index' => [ '_index' => 'interactions', '_id' => 2, ], ], [ 'user_id' => 1, 'product_id' => 2, 'timestamp' => '2021-02-01 00:00:00', ], // ... ]; $params = [ 'refresh' => true, 'body' => $actions, ]; $response = $client->bulk($params);
- Recommend to users
Recommend relevant products to users based on the relationship between users and products. You can use the query function provided by Elasticsearch to recommend products based on user preferences.
Sample code:
// 对用户进行推荐 $params = [ 'index' => 'interactions', 'body' => [ 'query' => [ 'match' => [ 'user_id' => 1, ], ], 'size' => 10, ], ]; $response = $client->search($params);
4. Summary
This article introduces how to build an efficient and accurate recommendation system based on Elasticsearch, and provides specific PHP code examples. By using Elasticsearch, we can easily import data, build indexes, and perform recommendation calculations, which improves the efficiency and accuracy of the recommendation system. I hope this article can be helpful to you when designing and implementing a recommendation system.
The above is the detailed content of Design and implementation of recommendation system based on Elasticsearch in PHP. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Laravel simplifies handling temporary session data using its intuitive flash methods. This is perfect for displaying brief messages, alerts, or notifications within your application. Data persists only for the subsequent request by default: $request-

The PHP Client URL (cURL) extension is a powerful tool for developers, enabling seamless interaction with remote servers and REST APIs. By leveraging libcurl, a well-respected multi-protocol file transfer library, PHP cURL facilitates efficient execution of various network protocols, including HTTP, HTTPS, and FTP. This extension offers granular control over HTTP requests, supports multiple concurrent operations, and provides built-in security features.

Laravel provides concise HTTP response simulation syntax, simplifying HTTP interaction testing. This approach significantly reduces code redundancy while making your test simulation more intuitive. The basic implementation provides a variety of response type shortcuts: use Illuminate\Support\Facades\Http; Http::fake([ 'google.com' => 'Hello World', 'github.com' => ['foo' => 'bar'], 'forge.laravel.com' =>

Do you want to provide real-time, instant solutions to your customers' most pressing problems? Live chat lets you have real-time conversations with customers and resolve their problems instantly. It allows you to provide faster service to your custom

Laravel's service container and service providers are fundamental to its architecture. This article explores service containers, details service provider creation, registration, and demonstrates practical usage with examples. We'll begin with an ove

PHP logging is essential for monitoring and debugging web applications, as well as capturing critical events, errors, and runtime behavior. It provides valuable insights into system performance, helps identify issues, and supports faster troubleshoot

Article discusses late static binding (LSB) in PHP, introduced in PHP 5.3, allowing runtime resolution of static method calls for more flexible inheritance.Main issue: LSB vs. traditional polymorphism; LSB's practical applications and potential perfo

The article discusses adding custom functionality to frameworks, focusing on understanding architecture, identifying extension points, and best practices for integration and debugging.
