


How to use Python scripts to send and receive emails in Linux
How to use Python scripts to send and receive emails in Linux
In Linux systems, we can use Python scripts to send and receive emails. Python's smtplib and imaplib modules provide corresponding functions.
1. Email sending
To implement the email sending function, you first need to prepare the sender’s email address and SMTP server related information. The following is a simple sample code:
import smtplib from email.mime.text import MIMEText def send_email(): # 发送方的邮箱地址和授权码 sender_email = "your_email@gmail.com" sender_password = "your_password" # 接收方的邮箱地址 receiver_email = "recipient_email@gmail.com" # 邮件主题和内容 subject = "Hello from Python Script" body = "This is a test email sent from a Python script." # 创建邮件对象 message = MIMEText(body, "plain") message["Subject"] = subject message["From"] = sender_email message["To"] = receiver_email # 发送邮件 try: server = smtplib.SMTP("smtp.gmail.com", 587) server.starttls() server.login(sender_email, sender_password) server.sendmail(sender_email, receiver_email, message.as_string()) print("Email sent successfully") except Exception as e: print("Failed to send email. Error:", str(e)) finally: server.quit() send_email()
In the above code, we use Gmail's SMTP server to send emails. You can replace it with other SMTP servers as needed, and pay attention to changing the corresponding port number.
2. Email Reception
To implement the email reception function, you need to prepare the recipient's email address, IMAP server information and login credentials. The following is a simple sample code:
import imaplib def receive_email(): # 接收方的邮箱地址和授权码 email_address = "recipient_email@gmail.com" email_password = "your_password" try: # 连接到IMAP服务器 mailbox = imaplib.IMAP4_SSL("imap.gmail.com") mailbox.login(email_address, email_password) # 选择邮箱 mailbox.select("INBOX") # 搜索并获取最新的邮件 result, data = mailbox.search(None, "ALL") latest_email_id = data[0].split()[-1] result, data = mailbox.fetch(latest_email_id, "(RFC822)") # 解析邮件内容 email_text = data[0][1].decode("utf-8") print("Received email: ", email_text) except Exception as e: print("Failed to receive email. Error:", str(e)) finally: mailbox.close() mailbox.logout() receive_email()
In the above code, we also use Gmail's IMAP server to receive emails. It can also be replaced with other IMAP servers as needed.
The above are the basic steps and code examples for using Python scripts to send and receive emails in Linux. Through these codes, we can flexibly send and receive emails in Linux systems. Hope this helps!
The above is the detailed content of How to use Python scripts to send and receive emails in Linux. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Dealing with noisy images is a common problem, especially with mobile phone or low-resolution camera photos. This tutorial explores image filtering techniques in Python using OpenCV to tackle this issue. Image Filtering: A Powerful Tool Image filter

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Python, a favorite for data science and processing, offers a rich ecosystem for high-performance computing. However, parallel programming in Python presents unique challenges. This tutorial explores these challenges, focusing on the Global Interprete

This tutorial demonstrates creating a custom pipeline data structure in Python 3, leveraging classes and operator overloading for enhanced functionality. The pipeline's flexibility lies in its ability to apply a series of functions to a data set, ge

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti
