Traffic rule recognition problems in autonomous driving
Traffic rule recognition problems in autonomous driving require specific code examples
Abstract:
Autonomous driving technology is developing rapidly and is expected to be commercialized in the future application. However, at the same time, autonomous vehicles face an important challenge, namely the identification and compliance of traffic rules. This article will focus on the problem of traffic rule recognition in autonomous driving and give some specific code examples.
- Research background
Autonomous vehicles need to abide by traffic rules while driving to ensure traffic safety and smoothness. However, traffic rule recognition is a challenging task for computer vision systems. Traffic rules come in various forms, including traffic lights, signs, road markings, etc. Therefore, how to accurately identify and understand these traffic rules has become an important issue in autonomous driving technology. - Traffic Rule Recognition Algorithm
In order to solve the problem of traffic rule recognition, computer vision and deep learning technologies can be used. Below is a simple code example that demonstrates how to use a deep learning model to recognize traffic signs.
import tensorflow as tf from tensorflow.keras.preprocessing.image import load_img, img_to_array from tensorflow.keras.applications.mobilenet_v2 import preprocess_input, decode_predictions import numpy as np # 加载训练好的模型 model = tf.keras.applications.MobileNetV2(weights='imagenet') # 定义标志标牌的类别 classes = ['stop', 'yield', 'speed_limit', 'no_entry', 'crosswalk'] # 加载并预处理图像 image_path = 'traffic_sign.jpg' image = load_img(image_path, target_size=(224, 224)) image = img_to_array(image) image = np.expand_dims(image, axis=0) image = preprocess_input(image) # 使用模型进行预测 predictions = model.predict(image) results = decode_predictions(predictions, top=1)[0] # 打印预测结果 for result in results: class_index = result[0] probability = result[1] class_name = classes[class_index] print('Predicted Traffic Sign:', class_name) print('Probability:', probability)
This example uses the pre-trained model MobileNetV2 for image classification. First, the image is converted into an input format that the model can accept by loading and preprocessing it. Then, use the model to predict the image, and output the category and probability of the traffic sign based on the prediction results.
- Extended Application
In addition to the recognition of traffic signs and placards, the recognition of other traffic rules can also be achieved by extending the above code. For example, you can use a target detection model to identify the traffic light status of a traffic light, or use a semantic segmentation model to identify road markings, etc. By combining different models and technologies, more comprehensive and accurate traffic rule recognition can be achieved.
Conclusion:
Traffic rule recognition is a key issue in autonomous driving technology. Through the reasonable application of computer vision and deep learning technology, accurate recognition of traffic rules such as traffic signs and signboards can be achieved. However, there are still some challenges, such as rule identification and exception handling in complex traffic environments. In the future, we can improve the traffic rule recognition capabilities of autonomous vehicles through further research and technological innovation.
The above is the detailed content of Traffic rule recognition problems in autonomous driving. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Written above & the author’s personal understanding Three-dimensional Gaussiansplatting (3DGS) is a transformative technology that has emerged in the fields of explicit radiation fields and computer graphics in recent years. This innovative method is characterized by the use of millions of 3D Gaussians, which is very different from the neural radiation field (NeRF) method, which mainly uses an implicit coordinate-based model to map spatial coordinates to pixel values. With its explicit scene representation and differentiable rendering algorithms, 3DGS not only guarantees real-time rendering capabilities, but also introduces an unprecedented level of control and scene editing. This positions 3DGS as a potential game-changer for next-generation 3D reconstruction and representation. To this end, we provide a systematic overview of the latest developments and concerns in the field of 3DGS for the first time.

Yesterday during the interview, I was asked whether I had done any long-tail related questions, so I thought I would give a brief summary. The long-tail problem of autonomous driving refers to edge cases in autonomous vehicles, that is, possible scenarios with a low probability of occurrence. The perceived long-tail problem is one of the main reasons currently limiting the operational design domain of single-vehicle intelligent autonomous vehicles. The underlying architecture and most technical issues of autonomous driving have been solved, and the remaining 5% of long-tail problems have gradually become the key to restricting the development of autonomous driving. These problems include a variety of fragmented scenarios, extreme situations, and unpredictable human behavior. The "long tail" of edge scenarios in autonomous driving refers to edge cases in autonomous vehicles (AVs). Edge cases are possible scenarios with a low probability of occurrence. these rare events

Trajectory prediction plays an important role in autonomous driving. Autonomous driving trajectory prediction refers to predicting the future driving trajectory of the vehicle by analyzing various data during the vehicle's driving process. As the core module of autonomous driving, the quality of trajectory prediction is crucial to downstream planning control. The trajectory prediction task has a rich technology stack and requires familiarity with autonomous driving dynamic/static perception, high-precision maps, lane lines, neural network architecture (CNN&GNN&Transformer) skills, etc. It is very difficult to get started! Many fans hope to get started with trajectory prediction as soon as possible and avoid pitfalls. Today I will take stock of some common problems and introductory learning methods for trajectory prediction! Introductory related knowledge 1. Are the preview papers in order? A: Look at the survey first, p

0.Written in front&& Personal understanding that autonomous driving systems rely on advanced perception, decision-making and control technologies, by using various sensors (such as cameras, lidar, radar, etc.) to perceive the surrounding environment, and using algorithms and models for real-time analysis and decision-making. This enables vehicles to recognize road signs, detect and track other vehicles, predict pedestrian behavior, etc., thereby safely operating and adapting to complex traffic environments. This technology is currently attracting widespread attention and is considered an important development area in the future of transportation. one. But what makes autonomous driving difficult is figuring out how to make the car understand what's going on around it. This requires that the three-dimensional object detection algorithm in the autonomous driving system can accurately perceive and describe objects in the surrounding environment, including their locations,

The first pilot and key article mainly introduces several commonly used coordinate systems in autonomous driving technology, and how to complete the correlation and conversion between them, and finally build a unified environment model. The focus here is to understand the conversion from vehicle to camera rigid body (external parameters), camera to image conversion (internal parameters), and image to pixel unit conversion. The conversion from 3D to 2D will have corresponding distortion, translation, etc. Key points: The vehicle coordinate system and the camera body coordinate system need to be rewritten: the plane coordinate system and the pixel coordinate system. Difficulty: image distortion must be considered. Both de-distortion and distortion addition are compensated on the image plane. 2. Introduction There are four vision systems in total. Coordinate system: pixel plane coordinate system (u, v), image coordinate system (x, y), camera coordinate system () and world coordinate system (). There is a relationship between each coordinate system,

Original title: SIMPL: ASimpleandEfficientMulti-agentMotionPredictionBaselineforAutonomousDriving Paper link: https://arxiv.org/pdf/2402.02519.pdf Code link: https://github.com/HKUST-Aerial-Robotics/SIMPL Author unit: Hong Kong University of Science and Technology DJI Paper idea: This paper proposes a simple and efficient motion prediction baseline (SIMPL) for autonomous vehicles. Compared with traditional agent-cent

Written in front & starting point The end-to-end paradigm uses a unified framework to achieve multi-tasking in autonomous driving systems. Despite the simplicity and clarity of this paradigm, the performance of end-to-end autonomous driving methods on subtasks still lags far behind single-task methods. At the same time, the dense bird's-eye view (BEV) features widely used in previous end-to-end methods make it difficult to scale to more modalities or tasks. A sparse search-centric end-to-end autonomous driving paradigm (SparseAD) is proposed here, in which sparse search fully represents the entire driving scenario, including space, time, and tasks, without any dense BEV representation. Specifically, a unified sparse architecture is designed for task awareness including detection, tracking, and online mapping. In addition, heavy

In the past month, due to some well-known reasons, I have had very intensive exchanges with various teachers and classmates in the industry. An inevitable topic in the exchange is naturally end-to-end and the popular Tesla FSDV12. I would like to take this opportunity to sort out some of my thoughts and opinions at this moment for your reference and discussion. How to define an end-to-end autonomous driving system, and what problems should be expected to be solved end-to-end? According to the most traditional definition, an end-to-end system refers to a system that inputs raw information from sensors and directly outputs variables of concern to the task. For example, in image recognition, CNN can be called end-to-end compared to the traditional feature extractor + classifier method. In autonomous driving tasks, input data from various sensors (camera/LiDAR
