Distribution shift problem in adversarial training requires specific code examples
Abstract: Distribution shift is a ubiquitous problem in machine learning and deep learning tasks question. In order to deal with this problem, researchers have proposed the method of adversarial training. This article will introduce the distribution shift problem in adversarial training and give code examples based on Generative Adversarial Networks (GANs).
The process of adversarial training can be simplified to the following steps:
(1) Training generator network: The generator network receives a random noise vector as input and generates a test set data Similar samples.
(2) Training the discriminator network: The discriminator network receives a sample as input and is classified as coming from the training set or the test set.
(3) Backpropagation update generator network: The goal of the generator network is to trick the discriminator network into misclassifying the generated samples as coming from the training set.
(4) Repeat steps (1)-(3) several times until the generator network converges.
import tensorflow as tf from tensorflow.keras import layers # 定义生成器网络 def make_generator_model(): model = tf.keras.Sequential() model.add(layers.Dense(256, input_shape=(100,), use_bias=False)) model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) model.add(layers.Dense(512, use_bias=False)) model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) model.add(layers.Dense(28 * 28, activation='tanh')) model.add(layers.Reshape((28, 28, 1))) return model # 定义判别器网络 def make_discriminator_model(): model = tf.keras.Sequential() model.add(layers.Flatten(input_shape=(28, 28, 1))) model.add(layers.Dense(512)) model.add(layers.LeakyReLU()) model.add(layers.Dense(256)) model.add(layers.LeakyReLU()) model.add(layers.Dense(1, activation='sigmoid')) return model # 定义生成器和判别器 generator = make_generator_model() discriminator = make_discriminator_model() # 定义生成器和判别器的优化器 generator_optimizer = tf.keras.optimizers.Adam(1e-4) discriminator_optimizer = tf.keras.optimizers.Adam(1e-4) # 定义损失函数 cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True) # 定义生成器的训练步骤 @tf.function def train_generator_step(images): noise = tf.random.normal([BATCH_SIZE, 100]) with tf.GradientTape() as gen_tape: generated_images = generator(noise, training=True) fake_output = discriminator(generated_images, training=False) gen_loss = generator_loss(fake_output) gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables) generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables)) # 定义判别器的训练步骤 @tf.function def train_discriminator_step(images): noise = tf.random.normal([BATCH_SIZE, 100]) with tf.GradientTape() as disc_tape: generated_images = generator(noise, training=True) real_output = discriminator(images, training=True) fake_output = discriminator(generated_images, training=True) disc_loss = discriminator_loss(real_output, fake_output) gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables) discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables)) # 开始对抗训练 def train(dataset, epochs): for epoch in range(epochs): for image_batch in dataset: train_discriminator_step(image_batch) train_generator_step(image_batch) # 加载MNIST数据集 (train_images, _), (_, _) = tf.keras.datasets.mnist.load_data() train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32') train_images = (train_images - 127.5) / 127.5 train_dataset = tf.data.Dataset.from_tensor_slices(train_images).shuffle(BUFFER_SIZE).batch(BATCH_SIZE) # 指定批次大小和缓冲区大小 BATCH_SIZE = 256 BUFFER_SIZE = 60000 # 指定训练周期 EPOCHS = 50 # 开始训练 train(train_dataset, EPOCHS)
In the above code example, we define the generator and discriminator For the network structure of the optimizer, the Adam optimizer and binary cross-entropy loss function were selected. Then, we define the training steps of the generator and discriminator and train the network through the training function. Finally, we loaded the MNIST dataset and performed the adversarial training process.
The above is the detailed content of Distribution shift problem in adversarial training. For more information, please follow other related articles on the PHP Chinese website!