Home > Technology peripherals > AI > Sentiment level recognition problem in sentiment analysis

Sentiment level recognition problem in sentiment analysis

王林
Release: 2023-10-09 09:41:04
Original
1139 people have browsed it

Sentiment level recognition problem in sentiment analysis

Sentiment level recognition problem in sentiment analysis requires specific code examples

Sentiment analysis is an important task in natural language processing, which aims to analyze text by computer Perform emotion classification and emotion level recognition. Emotion level recognition is an important part of sentiment analysis, which can help us understand the emotional information in text more accurately. This article will introduce the problem of emotion level recognition and provide some concrete code examples.

Emotion level recognition can divide the emotion of text into multiple levels, such as negative, neutral and positive. By identifying emotion levels in text, we can better understand people's emotional attitudes toward a topic or event.

When performing emotional level recognition, we can use machine learning methods. The following is a python-based example of code example for emotion level recognition using Naive Bayes classifier:

# 导入必要的库
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.model_selection import train_test_split

# 加载数据集
data = pd.read_csv('data.csv')

# 划分特征和目标变量
X = data['text']
y = data['label']

# 文本向量化
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(X)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

# 创建并训练朴素贝叶斯分类器
classifier = MultinomialNB()
classifier.fit(X_train, y_train)

# 评估分类器性能
accuracy = classifier.score(X_test, y_test)
print("Accuracy:", accuracy)
Copy after login

In this example, we first imported the necessary libraries and then loaded the files containing text and labels of data sets. Next, we use CountVectorizer to convert the text into a document-term frequency matrix for use as input to the machine learning model. Then, we divide the data set into training set and test set. Finally, we created a Naive Bayes classifier, trained and evaluated it using the training data.

Of course, this is just a simple example, and actual emotion-level recognition problems may require more complex algorithms and feature engineering. In addition, other methods such as support vector machines, deep learning, etc. can also be used to solve the emotion level recognition problem.

To summarize, emotion level recognition is an important task in sentiment analysis, which can help us more accurately identify emotional information in text. Through machine learning algorithms, we are able to build models for emotion-level recognition and obtain valuable information from them. I hope the sample code provided in this article will be helpful to readers.

The above is the detailed content of Sentiment level recognition problem in sentiment analysis. For more information, please follow other related articles on the PHP Chinese website!

source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template