Home Backend Development C++ Detailed explanation of multi-thread synchronization issues in C++

Detailed explanation of multi-thread synchronization issues in C++

Oct 10, 2023 am 11:29 AM
Multithreading c++ Sync issues

Detailed explanation of multi-thread synchronization issues in C++

Detailed explanation of multi-thread synchronization issues in C

In concurrent programming, multi-thread synchronization is an important issue. When multiple threads access shared resources at the same time, various problems will occur, such as race conditions, deadlocks, and livelocks. These problems will lead to program uncertainty and errors.

C provides a variety of mechanisms to handle multi-thread synchronization issues. This article will introduce several commonly used synchronization mechanisms in detail and provide specific code examples.

  1. Mutex (Mutex)
    Mutex is one of the most commonly used synchronization mechanisms, which ensures that only one thread can access shared resources at any time. By calling the lock() and unlock() methods of the std::mutex class, you can protect access to shared resources.

The following is a sample code that uses a mutex lock to protect shared resources:

#include <iostream>
#include <thread>
#include <mutex>

std::mutex mtx;
int shared_data = 0;

void increment_shared_data() {
    std::lock_guard<std::mutex> lock(mtx);
    shared_data++;
}

int main() {
    std::thread t1(increment_shared_data);
    std::thread t2(increment_shared_data);

    t1.join();
    t2.join();

    std::cout << "shared_data = " << shared_data << std::endl;

    return 0;
}
Copy after login

In the above code, the std::lock_guard class is used Automatically lock and unlock mutex locks. This ensures that only one thread can enter the critical section when accessing shared resources.

  1. Condition Variable
    Condition variable is a mechanism used for communication and synchronization between threads. It allows one or more threads to wait for a specific condition to occur and be awakened when the condition is met.

The following is a sample code that uses condition variables to implement the producer-consumer problem:

#include <iostream>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <queue>

std::mutex mtx;
std::condition_variable cv;
std::queue<int> data_queue;

void producer() {
    for (int i = 0; i < 10; i++) {
        {
            std::lock_guard<std::mutex> lock(mtx);
            data_queue.push(i);
        }
        cv.notify_one();
    }
}

void consumer() {
    while (true) {
        std::unique_lock<std::mutex> lock(mtx);
        cv.wait(lock, [] { return !data_queue.empty(); });

        int data = data_queue.front();
        data_queue.pop();

        lock.unlock();

        std::cout << "Consumer: " << data << std::endl;
    }
}

int main() {
    std::thread prod(producer);
    std::thread cons(consumer);

    prod.join();
    cons.join();

    return 0;
}
Copy after login

In this example, the producer thread continuously adds data to the queue, and The consumer thread takes the data from the queue and processes it. When the queue is empty, the consumer thread waits for the condition to be met.

  1. Atomic Operation
    Atomic operation is an indivisible operation and will not be interrupted. C 11 introduced the atomic operation library <atomic>, which defines some atomic types, such as std::atomic_int.

The following is a sample code that uses atomic operations to implement a thread-safe counter:

#include <iostream>
#include <thread>
#include <atomic>

std::atomic_int counter(0);

void increment_counter() {
    counter++;
}

int main() {
    std::thread t1(increment_counter);
    std::thread t2(increment_counter);

    t1.join();
    t2.join();

    std::cout << "counter = " << counter << std::endl;

    return 0;
}
Copy after login

In the above code, the std::atomic_int type ##counterVariables can be safely accessed and modified by multiple threads at the same time, ensuring the correctness of the counter.

The synchronization mechanism introduced above is only one of several ways to deal with multi-thread synchronization problems in C. Depending on the actual needs and the complexity of the problem, other synchronization methods can also be used, such as semaphores, barriers, etc. .

Summary:

Strict multi-thread synchronization is a core issue in concurrent programming. C provides multiple mechanisms such as mutex locks, condition variables, and atomic operations to handle multi-thread synchronization issues. Reasonable selection of appropriate synchronization methods and correct use of these mechanisms can effectively avoid the occurrence of various concurrency problems.

Note: The above code is only an example. Actual use may require more complex logic and error handling.

The above is the detailed content of Detailed explanation of multi-thread synchronization issues in C++. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

What is the role of char in C strings What is the role of char in C strings Apr 03, 2025 pm 03:15 PM

In C, the char type is used in strings: 1. Store a single character; 2. Use an array to represent a string and end with a null terminator; 3. Operate through a string operation function; 4. Read or output a string from the keyboard.

How to calculate c-subscript 3 subscript 5 c-subscript 3 subscript 5 algorithm tutorial How to calculate c-subscript 3 subscript 5 c-subscript 3 subscript 5 algorithm tutorial Apr 03, 2025 pm 10:33 PM

The calculation of C35 is essentially combinatorial mathematics, representing the number of combinations selected from 3 of 5 elements. The calculation formula is C53 = 5! / (3! * 2!), which can be directly calculated by loops to improve efficiency and avoid overflow. In addition, understanding the nature of combinations and mastering efficient calculation methods is crucial to solving many problems in the fields of probability statistics, cryptography, algorithm design, etc.

Four ways to implement multithreading in C language Four ways to implement multithreading in C language Apr 03, 2025 pm 03:00 PM

Multithreading in the language can greatly improve program efficiency. There are four main ways to implement multithreading in C language: Create independent processes: Create multiple independently running processes, each process has its own memory space. Pseudo-multithreading: Create multiple execution streams in a process that share the same memory space and execute alternately. Multi-threaded library: Use multi-threaded libraries such as pthreads to create and manage threads, providing rich thread operation functions. Coroutine: A lightweight multi-threaded implementation that divides tasks into small subtasks and executes them in turn.

distinct function usage distance function c usage tutorial distinct function usage distance function c usage tutorial Apr 03, 2025 pm 10:27 PM

std::unique removes adjacent duplicate elements in the container and moves them to the end, returning an iterator pointing to the first duplicate element. std::distance calculates the distance between two iterators, that is, the number of elements they point to. These two functions are useful for optimizing code and improving efficiency, but there are also some pitfalls to be paid attention to, such as: std::unique only deals with adjacent duplicate elements. std::distance is less efficient when dealing with non-random access iterators. By mastering these features and best practices, you can fully utilize the power of these two functions.

How to apply snake nomenclature in C language? How to apply snake nomenclature in C language? Apr 03, 2025 pm 01:03 PM

In C language, snake nomenclature is a coding style convention, which uses underscores to connect multiple words to form variable names or function names to enhance readability. Although it won't affect compilation and operation, lengthy naming, IDE support issues, and historical baggage need to be considered.

Usage of releasesemaphore in C Usage of releasesemaphore in C Apr 04, 2025 am 07:54 AM

The release_semaphore function in C is used to release the obtained semaphore so that other threads or processes can access shared resources. It increases the semaphore count by 1, allowing the blocking thread to continue execution.

Issues with Dev-C version Issues with Dev-C version Apr 03, 2025 pm 07:33 PM

Dev-C 4.9.9.2 Compilation Errors and Solutions When compiling programs in Windows 11 system using Dev-C 4.9.9.2, the compiler record pane may display the following error message: gcc.exe:internalerror:aborted(programcollect2)pleasesubmitafullbugreport.seeforinstructions. Although the final "compilation is successful", the actual program cannot run and an error message "original code archive cannot be compiled" pops up. This is usually because the linker collects

C Programmer &#s Undefined Behavior Guide C Programmer &#s Undefined Behavior Guide Apr 03, 2025 pm 07:57 PM

Exploring Undefined Behaviors in C Programming: A Detailed Guide This article introduces an e-book on Undefined Behaviors in C Programming, a total of 12 chapters covering some of the most difficult and lesser-known aspects of C Programming. This book is not an introductory textbook for C language, but is aimed at readers familiar with C language programming, and explores in-depth various situations and potential consequences of undefined behaviors. Author DmitrySviridkin, editor Andrey Karpov. After six months of careful preparation, this e-book finally met with readers. Printed versions will also be launched in the future. This book was originally planned to include 11 chapters, but during the creation process, the content was continuously enriched and finally expanded to 12 chapters - this itself is a classic array out-of-bounds case, and it can be said to be every C programmer

See all articles