How to encrypt and decrypt data in Python
How to encrypt and decrypt data in Python requires specific code examples
Data encryption and decryption are very important concepts in the field of information security. In practical applications, we often need to encrypt sensitive data to prevent unauthorized access and information leakage. Python is a powerful programming language that provides a wealth of libraries and functions to implement data encryption and decryption operations. This article will introduce some commonly used encryption algorithms and specific code examples for implementing data encryption and decryption in Python.
1. MD5 encryption algorithm
MD5 (Message-Digest Algorithm 5) is a commonly used hash function used to encrypt data of any length. It converts messages of any length into a 128-bit digital fingerprint to ensure data integrity and non-tamperability.
In Python, we can use the hashlib library to implement the MD5 encryption algorithm. The following is a sample code:
import hashlib def md5_encrypt(data): md5 = hashlib.md5() md5.update(data.encode(encoding='utf-8')) encrypt_data = md5.hexdigest() return encrypt_data # 测试示例 data = 'hello world' encrypted_data = md5_encrypt(data) print("加密后的数据:", encrypted_data)
Running results:
加密后的数据: 5eb63bbbe01eeed093cb22bb8f5acdc3
2. AES encryption algorithm
AES (Advanced Encryption Standard) is an advanced encryption standard that is widely used in Various encryption scenarios. It uses symmetric key encryption to perform fast and secure encryption and decryption operations on data.
In Python, we can use the pycryptodome library to implement the AES encryption algorithm. The following is a sample code:
from Crypto.Cipher import AES from Crypto.Random import get_random_bytes def aes_encrypt(data, key): cipher = AES.new(key, AES.MODE_EAX) nonce = cipher.nonce ciphertext, tag = cipher.encrypt_and_digest(data.encode()) encrypted_data = nonce + ciphertext + tag return encrypted_data def aes_decrypt(encrypted_data, key): nonce = encrypted_data[:16] ciphertext = encrypted_data[16:-16] tag = encrypted_data[-16:] cipher = AES.new(key, AES.MODE_EAX, nonce=nonce) data = cipher.decrypt_and_verify(ciphertext, tag) return data.decode() # 测试示例 data = 'hello world' key = get_random_bytes(16) encrypted_data = aes_encrypt(data, key) print("加密后的数据:", encrypted_data) decrypted_data = aes_decrypt(encrypted_data, key) print("解密后的数据:", decrypted_data)
Running results:
解密后的数据: hello world
3. RSA encryption algorithm
RSA (Rivest-Shamir-Adleman) is an asymmetric encryption algorithm. Commonly used for data encryption and digital signatures. It uses two keys, the public key is used to encrypt data and the private key is used to decrypt data.
In Python, we can use the cryptography library to implement the RSA encryption algorithm. The following is a sample code:
from cryptography.hazmat.primitives import serialization from cryptography.hazmat.primitives.asymmetric import rsa, padding from cryptography.hazmat.backends import default_backend def rsa_encrypt(data, public_key): public_key = serialization.load_pem_public_key(public_key, backend=default_backend()) encrypted_data = public_key.encrypt(data.encode(), padding.OAEP(mgf=padding.MGF1(algorithm=hashes.SHA256()), algorithm=hashes.SHA256(), label=None)) return encrypted_data def rsa_decrypt(encrypted_data, private_key): private_key = serialization.load_pem_private_key(private_key, password=None, backend=default_backend()) decrypted_data = private_key.decrypt(encrypted_data, padding.OAEP(mgf=padding.MGF1(algorithm=hashes.SHA256()), algorithm=hashes.SHA256(), label=None)) return decrypted_data.decode() # 测试示例 data = 'hello world' private_key = rsa.generate_private_key(public_exponent=65537, key_size=2048, backend=default_backend()) private_pem = private_key.private_bytes(encoding=serialization.Encoding.PEM, format=serialization.PrivateFormat.PKCS8, encryption_algorithm=serialization.NoEncryption()) public_key = private_key.public_key() public_pem = public_key.public_bytes(encoding=serialization.Encoding.PEM, format=serialization.PublicFormat.SubjectPublicKeyInfo) encrypted_data = rsa_encrypt(data, public_pem) print("加密后的数据:", encrypted_data) decrypted_data = rsa_decrypt(encrypted_data, private_pem) print("解密后的数据:", decrypted_data)
Running results:
解密后的数据: hello world
Through the above sample code, we can see how to use different encryption algorithms to encrypt and decrypt data in Python. Choosing an appropriate encryption algorithm and key length, and following secure coding practices, will ensure data confidentiality and integrity. Please note that the sample code in this article is for reference only. In actual application, details such as key management and data transmission security need to be considered.
The above is the detailed content of How to encrypt and decrypt data in Python. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



MySQL has a free community version and a paid enterprise version. The community version can be used and modified for free, but the support is limited and is suitable for applications with low stability requirements and strong technical capabilities. The Enterprise Edition provides comprehensive commercial support for applications that require a stable, reliable, high-performance database and willing to pay for support. Factors considered when choosing a version include application criticality, budgeting, and technical skills. There is no perfect option, only the most suitable option, and you need to choose carefully according to the specific situation.

The article introduces the operation of MySQL database. First, you need to install a MySQL client, such as MySQLWorkbench or command line client. 1. Use the mysql-uroot-p command to connect to the server and log in with the root account password; 2. Use CREATEDATABASE to create a database, and USE select a database; 3. Use CREATETABLE to create a table, define fields and data types; 4. Use INSERTINTO to insert data, query data, update data by UPDATE, and delete data by DELETE. Only by mastering these steps, learning to deal with common problems and optimizing database performance can you use MySQL efficiently.

MySQL database performance optimization guide In resource-intensive applications, MySQL database plays a crucial role and is responsible for managing massive transactions. However, as the scale of application expands, database performance bottlenecks often become a constraint. This article will explore a series of effective MySQL performance optimization strategies to ensure that your application remains efficient and responsive under high loads. We will combine actual cases to explain in-depth key technologies such as indexing, query optimization, database design and caching. 1. Database architecture design and optimized database architecture is the cornerstone of MySQL performance optimization. Here are some core principles: Selecting the right data type and selecting the smallest data type that meets the needs can not only save storage space, but also improve data processing speed.

HadiDB: A lightweight, high-level scalable Python database HadiDB (hadidb) is a lightweight database written in Python, with a high level of scalability. Install HadiDB using pip installation: pipinstallhadidb User Management Create user: createuser() method to create a new user. The authentication() method authenticates the user's identity. fromhadidb.operationimportuseruser_obj=user("admin","admin")user_obj.

It is impossible to view MongoDB password directly through Navicat because it is stored as hash values. How to retrieve lost passwords: 1. Reset passwords; 2. Check configuration files (may contain hash values); 3. Check codes (may hardcode passwords).

MySQL can run without network connections for basic data storage and management. However, network connection is required for interaction with other systems, remote access, or using advanced features such as replication and clustering. Additionally, security measures (such as firewalls), performance optimization (choose the right network connection), and data backup are critical to connecting to the Internet.

MySQL Workbench can connect to MariaDB, provided that the configuration is correct. First select "MariaDB" as the connector type. In the connection configuration, set HOST, PORT, USER, PASSWORD, and DATABASE correctly. When testing the connection, check that the MariaDB service is started, whether the username and password are correct, whether the port number is correct, whether the firewall allows connections, and whether the database exists. In advanced usage, use connection pooling technology to optimize performance. Common errors include insufficient permissions, network connection problems, etc. When debugging errors, carefully analyze error information and use debugging tools. Optimizing network configuration can improve performance

For production environments, a server is usually required to run MySQL, for reasons including performance, reliability, security, and scalability. Servers usually have more powerful hardware, redundant configurations and stricter security measures. For small, low-load applications, MySQL can be run on local machines, but resource consumption, security risks and maintenance costs need to be carefully considered. For greater reliability and security, MySQL should be deployed on cloud or other servers. Choosing the appropriate server configuration requires evaluation based on application load and data volume.
