ChatGPT Java: How to implement automatic summarization and extraction of key information from articles, specific code examples are required
Summary and key information extraction are very important in information retrieval and text processing Task. To implement automatic summarization and extract key information of articles in Java, you can use natural language processing (NLP) libraries and related algorithms. This article will introduce how to use Lucene and Stanford CoreNLP to implement these functions, and give specific code examples.
1. Automatic summary
Automatic summary generates a concise summary of the text by extracting important sentences or phrases from the text. In Java, we can use the Lucene library to implement the automatic summary function. The following is a simple sample code:
import org.apache.lucene.analysis.Analyzer; import org.apache.lucene.analysis.standard.StandardAnalyzer; import org.apache.lucene.document.Document; import org.apache.lucene.document.Field; import org.apache.lucene.document.TextField; import org.apache.lucene.index.IndexWriter; import org.apache.lucene.index.IndexWriterConfig; import org.apache.lucene.search.IndexSearcher; import org.apache.lucene.search.ScoreDoc; import org.apache.lucene.search.TopDocs; import org.apache.lucene.store.Directory; import org.apache.lucene.store.RAMDirectory; public class Summarizer { public static String summarize(String text, int numSentences) throws Exception { // 创建索引 Directory directory = new RAMDirectory(); Analyzer analyzer = new StandardAnalyzer(); IndexWriterConfig config = new IndexWriterConfig(analyzer); IndexWriter writer = new IndexWriter(directory, config); // 创建文档 Document doc = new Document(); doc.add(new TextField("text", text, Field.Store.YES)); writer.addDocument(doc); writer.close(); // 搜索并获取摘要 IndexSearcher searcher = new IndexSearcher(directory); TopDocs topDocs = searcher.search(query, numSentences); StringBuilder summary = new StringBuilder(); for (ScoreDoc scoreDoc : topDocs.scoreDocs) { Document summaryDoc = searcher.doc(scoreDoc.doc); summary.append(summaryDoc.get("text")).append(" "); } searcher.getIndexReader().close(); directory.close(); return summary.toString(); } }
In the above code, we use the Lucene library to create a memory index and search results, and then extract relevant sentences as summaries.
2. Extract key information of the article
Key information extraction refers to extracting the most representative and important keywords or phrases from the text. In Java, we can use the Stanford CoreNLP library to implement this functionality. The following is a simple sample code:
import edu.stanford.nlp.simple.*; public class KeywordExtractor { public static List<String> extractKeywords(String text, int numKeywords) { List<String> keywords = new ArrayList<>(); Document document = new Document(text); // 提取名词关键词 for (Sentence sentence : document.sentences()) { for (String word : sentence.words()) { if (sentence.posTag(word).startsWith("NN")) { keywords.add(word); } } } // 统计关键词频率 Map<String, Integer> freqMap = new HashMap<>(); for (String keyword : keywords) { freqMap.put(keyword, freqMap.getOrDefault(keyword, 0) + 1); } // 按照频率排序 List<Map.Entry<String, Integer>> sortedList = new ArrayList<>(freqMap.entrySet()); sortedList.sort(Map.Entry.comparingByValue(Comparator.reverseOrder())); // 返回前 numKeywords 个关键词 List<String> topKeywords = new ArrayList<>(); for (int i = 0; i < Math.min(numKeywords, sortedList.size()); i++) { topKeywords.add(sortedList.get(i).getKey()); } return topKeywords; } }
In the above code, we use the Stanford CoreNLP library to extract noun keywords in the text, and use frequency statistics and ranking to obtain the most representative keywords.
3. Summary
This article introduces how to use Java to implement automatic summary and extract key information of articles. By using Lucene and Stanford CoreNLP libraries and related algorithms, we can implement these functions more easily. Hopefully these code examples will help you better understand and practice these tasks.
The above is the detailed content of ChatGPT Java: How to automatically summarize and extract key information from articles. For more information, please follow other related articles on the PHP Chinese website!