(Oralce)Web翻页优化实例_PHP
Web翻页优化实例
作者:Wanghai
环境:
Linux version 2.4.20-8custom (root@web2) (gcc version 3.2.2 20030222 (Red Hat Linux 3.2.2-5)) #3 SMP Thu Jun 5 22:03:36 CST 2003
Mem: 2113466368
Swap: 4194881536
CPU:两个超线程的Intel(R) Xeon(TM) CPU 2.40GHz
优化前语句在mysql里面查询15秒左右出来,转移到oracle后进行在不调整索引和语句的情况下执行时间大概是4-5秒,调整后执行时间小于0.5秒。
翻页语句:
SELECT * FROM (SELECT T1.*, rownum as linenum FROM (
SELECT /*+ index(a ind_old)*/
a.category FROM auction_auctions a WHERE a.category =' 170101 ' AND a.closed='0' AND ends > sysdate AND (a.approve_status>=0) ORDER BY a.ends) T1 WHERE rownum < 18681) WHERE linenum >= 18641
被查询的表:auction_auctions(产品表)
表结构:
SQL> desc auction_auctions;
Name Null? Type
----------------------------------------- -------- ----------------------------
ID NOT NULL VARCHAR2(32)
USERNAME VARCHAR2(32)
TITLE CLOB
GMT_MODIFIED NOT NULL DATE
STARTS NOT NULL DATE
DESCRIPTION CLOB
PICT_URL CLOB
CATEGORY NOT NULL VARCHAR2(11)
MINIMUM_BID NUMBER
RESERVE_PRICE NUMBER
BUY_NOW NUMBER
AUCTION_TYPE CHAR(1)
DURATION VARCHAR2(7)
INCREMENTNUM NOT NULL NUMBER
CITY VARCHAR2(30)
PROV VARCHAR2(20)
LOCATION VARCHAR2(40)
LOCATION_ZIP VARCHAR2(6)
SHIPPING CHAR(1)
PAYMENT CLOB
INTERNATIONAL CHAR(1)
ENDS NOT NULL DATE
CURRENT_BID NUMBER
CLOSED CHAR(2)
PHOTO_UPLOADED CHAR(1)
QUANTITY NUMBER(11)
STORY CLOB
HAVE_INVOICE NOT NULL NUMBER(1)
HAVE_GUARANTEE NOT NULL NUMBER(1)
STUFF_STATUS NOT NULL NUMBER(1)
APPROVE_STATUS NOT NULL NUMBER(1)
OLD_STARTS NOT NULL DATE
ZOO VARCHAR2(10)
PROMOTED_STATUS NOT NULL NUMBER(1)
REPOST_TYPE CHAR(1)
REPOST_TIMES NOT NULL NUMBER(4)
SECURE_TRADE_AGREE NOT NULL NUMBER(1)
SECURE_TRADE_TRANSACTION_FEE VARCHAR2(16)
SECURE_TRADE_ORDINARY_POST_FEE NUMBER
SECURE_TRADE_FAST_POST_FEE NUMBER
表记录数及大小
SQL> select count(*) from auction_auctions;
COUNT(*)
----------
537351
SQL> select segment_name,bytes,blocks from user_segments where segment_name ='AUCTION_AUCTIONS';
SEGMENT_NAME BYTES BLOCKS
AUCTION_AUCTIONS 1059061760 129280
表上原有的索引
create index ind_old on auction_auctions(closed,approve_status,category,ends) tablespace tbsindex compress 2;
SQL> select segment_name,bytes,blocks from user_segments where segment_name = 'IND_OLD';
SEGMENT_NAME BYTES BLOCKS
IND_OLD 20971520 2560
表和索引都已经分析过,我们来看一下sql执行的费用
SQL> set autotrace trace;
SQL> SELECT * FROM (SELECT T1.*, rownum as linenum FROM (SELECT a.* FROM auction_auctions a WHERE a.category like '18%' AND a.closed='0' AND ends > sysdate AND (a.approve_status>=0) ORDER BY a.ends) T1 WHERE rownum <18681) WHERE linenum >= 18641;
40 rows selected.
Execution Plan
----------------------------------------------------------
0 SELECT STATEMENT Optimizer=CHOOSE (Cost=19152 Card=18347 Byt
es=190698718)
1 0 VIEW (Cost=19152 Card=18347 Bytes=190698718)
2 1 COUNT (STOPKEY)
3 2 VIEW (Cost=19152 Card=18347 Bytes=190460207)
4 3 TABLE ACCESS (BY INDEX ROWID) OF 'AUCTION_AUCTIONS'
(Cost=19152 Card=18347 Bytes=20860539)
5 4 INDEX (RANGE SCAN) OF 'IND_OLD' (NON-UNIQUE) (Cost
=810 Card=186003)
Statistics
----------------------------------------------------------
0 recursive calls
0 db block gets
19437 consistent gets
18262 physical reads
0 redo size
114300 bytes sent via SQL*Net to client
56356 bytes received via SQL*Net from client
435 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
40 rows processed
我们可以看到这条sql语句通过索引范围扫描找到最里面的结果集,然后通过两个view操作最后得出数据。其中18502 consistent gets,17901 physical reads
我们来看一下这个索引建的到底合不合理,先看下各个查寻列的distinct值
select count(distinct ends) from auction_auctions;
COUNT(DISTINCTENDS)
-------------------
338965
SQL> select count(distinct category) from auction_auctions;
COUNT(DISTINCTCATEGORY)
-----------------------
1148
SQL> select count(distinct closed) from auction_auctions;
COUNT(DISTINCTCLOSED)
---------------------
2
SQL> select count(distinct approve_status) from auction_auctions;
COUNT(DISTINCTAPPROVE_STATUS)
-----------------------------
5
页索引里列平均存储长度
SQL> select avg(vsize(ends)) from auction_auctions;
AVG(VSIZE(ENDS))
----------------
7
SQL> select avg(vsize(closed)) from auction_auctions;
AVG(VSIZE(CLOSED))
------------------
2
SQL> select avg(vsize(category)) from auction_auctions;
AVG(VSIZE(CATEGORY))
--------------------
5.52313106
SQL> select avg(vsize(approve_status)) from auction_auctions;
AVG(VSIZE(APPROVE_STATUS))
--------------------------
1.67639401
我们来估算一下各种组合索引的大小,可以看到closed,approve_status,category都是相对较低集势的列(重复值较多),下面我们来大概计算下各种页索引需要的空间
column distinct num column len
ends 338965 7
category 1148 5.5
closed 2 2
approve_status 5 1.7
index1: (ends,closed,category,approve_status) compress 2
ends:distinct number---338965
closed: distinct number---2
index size=338965*2*(9+2)+ 537351*(1.7+5.5+6)=14603998
index2: (closed,category,ends,approve_status)
closed: distinct number---2
category: distinct number---1148
index size=2*1148*(2+5.5)+537351*(7+1.7+6)=7916279
index3: (closed,approve_status,category,ends)
closed: distinct number---2
approve_status: distinct number―5
index size=2*5*(2+1.7)+537351*(7+5.5+6)=9941030
结果出来了,index2: (closed,category,ends,approve_status)的索引最小
我们再来看一下语句
SELECT * FROM (SELECT T1.*, rownum as linenum FROM (SELECT a.* FROM auction_auctions a WHERE a.category like '18%' AND a.closed='0' AND ends > sysdate AND (a.approve_status>=0) ORDER BY a.ends) T1 WHERE rownum <18681) WHERE linenum >= 18641;
可以看出这个sql语句有很大优化余地,首先最里面的结果集SELECT a.* FROM auction_auctions a WHERE a.category like '18%' AND a.closed='0' AND ends > sysdate AND (a.approve_status>=0) ORDER BY a.ends,这里的话会走index range scan,然后table scan by rowid,这样的话如果符合条件的数据多的话相当耗资源,我们可以改写成
SELECT a.rowid FROM auction_auctions a WHERE a.category like '18%' AND a.closed='0' AND ends > sysdate AND (a.approve_status>=0) ORDER BY a.ends
这样的话最里面的结果集只需要index fast full scan就可以完成了,再改写一下得出以下语句
select * from auction_auctions where rowid in (SELECT rid FROM (
SELECT T1.rowid rid, rownum as linenum FROM
(SELECT a.rowid FROM auction_auctions a WHERE a.category like '18%' AND a.closed='0' AND ends > sysdate AND
(a.approve_status>=0) ORDER BY a.ends) T1 WHERE rownum < 18681) WHERE linenum >= 18641)
下面我们来测试一下这个索引的查询开销
select * from auction_auctions where rowid in (SELECT rid FROM (
SELECT T1.rowid rid, rownum as linenum FROM
(SELECT a.rowid FROM auction_auctions a WHERE a.category like '18%' AND a.closed='0' AND ends > sysdate AND
(a.approve_status>=0) ORDER BY a.closed,a.ends) T1 WHERE rownum < 18681) WHERE linenum >= 18641)
Execution Plan
----------------------------------------------------------
0 SELECT STATEMENT Optimizer=CHOOSE (Cost=18698 Card=18344 Byt
es=21224008)
1 0 NESTED LOOPS (Cost=18698 Card=18344 Bytes=21224008)
2 1 VIEW (Cost=264 Card=18344 Bytes=366880)
3 2 SORT (UNIQUE)
4 3 COUNT (STOPKEY)
5 4 VIEW (Cost=264 Card=18344 Bytes=128408)
6 5 SORT (ORDER BY STOPKEY) (Cost=264 Card=18344 Byt
es=440256)
7 6 INDEX (FAST FULL SCAN) OF 'IDX_AUCTION_BROWSE'
(NON-UNIQUE) (Cost=159 Card=18344 Bytes=440256)
8 1 TABLE ACCESS (BY USER ROWID) OF 'AUCTION_AUCTIONS' (Cost
=1 Card=1 Bytes=1137)
Statistics
----------------------------------------------------------
0 recursive calls
0 db block gets
2080 consistent gets
1516 physical reads
0 redo size
114840 bytes sent via SQL*Net to client
56779 bytes received via SQL*Net from client
438 SQL*Net roundtrips to/from client
2 sorts (memory)
0 sorts (disk)
40 rows processed
可以看到consistent gets从19437降到2080,physical reads从18262降到1516,查询时间也丛4秒左右下降到0。5秒,可以来说这次sql调整取得了预期的效果。
又修改了一下语句,
SQL> select * from auction_auctions where rowid in
2 (SELECT rid FROM (
3 SELECT T1.rowid rid, rownum as linenum FROM
4 (SELECT a.rowid FROM auction_auctions a
5 WHERE a.category like '18%' AND a.closed='0' AND ends > sysdate AND
a.approve_status>=0
6 7 ORDER BY a.closed,a.category,a.ends) T1
8 WHERE rownum < 18600) WHERE linenum >= 18560) ;
40 rows selected.
Execution Plan
----------------------------------------------------------
0 SELECT STATEMENT Optimizer=CHOOSE (Cost=17912 Card=17604 Byt
es=20367828)
1 0 NESTED LOOPS (Cost=17912 Card=17604 Bytes=20367828)
2 1 VIEW (Cost=221 Card=17604 Bytes=352080)
3 2 SORT (UNIQUE)
4 3 COUNT (STOPKEY)
5 4 VIEW (Cost=221 Card=17604 Bytes=123228)
6 5 INDEX (RANGE SCAN) OF 'IDX_AUCTION_BROWSE' (NON-
UNIQUE) (Cost=221 Card=17604 Bytes=422496)
7 1 TABLE ACCESS (BY USER ROWID) OF 'AUCTION_AUCTIONS' (Cost
=1 Card=1 Bytes=1137)
Statistics
----------------------------------------------------------
0 recursive calls
0 db block gets
550 consistent gets
14 physical reads
0 redo size
117106 bytes sent via SQL*Net to client
56497 bytes received via SQL*Net from client
436 SQL*Net roundtrips to/from client
1 sorts (memory)
0 sorts (disk)
40 rows processed
在order by里加上索引前导列,消除了
6 5 SORT (ORDER BY STOPKEY) (Cost=264 Card=18344 Byt
es=440256)
,把consistent gets从2080降到550

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Laravel is a popular PHP development framework, but it is sometimes criticized for being as slow as a snail. What exactly causes Laravel's unsatisfactory speed? This article will provide an in-depth explanation of the reasons why Laravel is as slow as a snail from multiple aspects, and combine it with specific code examples to help readers gain a deeper understanding of this problem. 1. ORM query performance issues In Laravel, ORM (Object Relational Mapping) is a very powerful feature that allows

Golang's garbage collection (GC) has always been a hot topic among developers. As a fast programming language, Golang's built-in garbage collector can manage memory very well, but as the size of the program increases, some performance problems sometimes occur. This article will explore Golang’s GC optimization strategies and provide some specific code examples. Garbage collection in Golang Golang's garbage collector is based on concurrent mark-sweep (concurrentmark-s

Time complexity measures the execution time of an algorithm relative to the size of the input. Tips for reducing the time complexity of C++ programs include: choosing appropriate containers (such as vector, list) to optimize data storage and management. Utilize efficient algorithms such as quick sort to reduce computation time. Eliminate multiple operations to reduce double counting. Use conditional branches to avoid unnecessary calculations. Optimize linear search by using faster algorithms such as binary search.

Decoding Laravel performance bottlenecks: Optimization techniques fully revealed! Laravel, as a popular PHP framework, provides developers with rich functions and a convenient development experience. However, as the size of the project increases and the number of visits increases, we may face the challenge of performance bottlenecks. This article will delve into Laravel performance optimization techniques to help developers discover and solve potential performance problems. 1. Database query optimization using Eloquent delayed loading When using Eloquent to query the database, avoid

Laravel performance bottleneck revealed: optimization solution revealed! With the development of Internet technology, the performance optimization of websites and applications has become increasingly important. As a popular PHP framework, Laravel may face performance bottlenecks during the development process. This article will explore the performance problems that Laravel applications may encounter, and provide some optimization solutions and specific code examples so that developers can better solve these problems. 1. Database query optimization Database query is one of the common performance bottlenecks in Web applications. exist

1. Press the key combination (win key + R) on the desktop to open the run window, then enter [regedit] and press Enter to confirm. 2. After opening the Registry Editor, we click to expand [HKEY_CURRENT_USERSoftwareMicrosoftWindowsCurrentVersionExplorer], and then see if there is a Serialize item in the directory. If not, we can right-click Explorer, create a new item, and name it Serialize. 3. Then click Serialize, then right-click the blank space in the right pane, create a new DWORD (32) bit value, and name it Star

The relationship between the number of Oracle instances and database performance Oracle database is one of the well-known relational database management systems in the industry and is widely used in enterprise-level data storage and management. In Oracle database, instance is a very important concept. Instance refers to the running environment of Oracle database in memory. Each instance has an independent memory structure and background process, which is used to process user requests and manage database operations. The number of instances has an important impact on the performance and stability of Oracle database.

Vivox100s parameter configuration revealed: How to optimize processor performance? In today's era of rapid technological development, smartphones have become an indispensable part of our daily lives. As an important part of a smartphone, the performance optimization of the processor is directly related to the user experience of the mobile phone. As a high-profile smartphone, Vivox100s's parameter configuration has attracted much attention, especially the optimization of processor performance has attracted much attention from users. As the "brain" of the mobile phone, the processor directly affects the running speed of the mobile phone.
