


How to use Docker for container log analysis and exception monitoring
Docker is a popular containerization technology that packages an application and its dependencies into a container to run as a single portable application unit. This technology allows developers to easily deploy and manage applications in different environments. In practical applications, log analysis and exception monitoring of Docker containers are very necessary. This article will introduce how to use Docker for container log analysis and exception monitoring, including the following aspects:
- Docker container log
- Use the Docker log command to view the log
- Use Logstash for log collection and analysis
- Use Elasticsearch for data indexing and storage
- Use Kibana for data visualization display
First we need to know about Docker containers log.
1. Docker container logs
Docker container logs record the operation information in the container, including: application output information, error information, access logs, system logs, etc. This information is very important for application operation and maintenance, tracking, exception handling, etc., so we need to collect and analyze the logs of Docker containers.
2. Use the Docker log command to view the log
Docker provides the log command, which can be used to view the log information output by the container. Using the log command, we can easily view the real-time output information of the running container and output this information to the console or save it to a file. The following is an example of using the log command to view container logs:
// 查看容器ID为xxx的日志 docker logs xxx // 查看容器ID为xxx的日志,输出到控制台并实时更新 docker logs -f xxx // 查看容器ID为xxx的最近10条日志 docker logs --tail 10 xxx
By using the log command, developers can easily view the real-time output information of the container and quickly determine the problem, but this method is suitable for a single For containers on the host, when the size of the container increases, it becomes difficult to manually view the logs, so log collection tools need to be used to automatically collect and analyze the logs.
3. Use Logstash for log collection and analysis
Logstash is an open source tool for collecting, filtering, converting and sending logs. Data is collected through input plug-ins and processed and converted by filters. data, and then the output plugin sends the processed data to a destination such as Elasticsearch, Kafka, Amazon S3, etc. In the log collection of Docker containers, we can use Logstash as a tool to collect and analyze logs. The following is an example of using Logstash for log collection and analysis:
1. Install Logstash
Download Logstash from the official website and unzip the file to use. The command to start Logstash is as follows:
cd logstash-7.15.1/bin ./logstash -f logstash.conf
2. Configure Logstash
To use Logstash as the log collection tool for the container, we need to configure the input plug-in and output plug-in in Logstash. The following is an example of the configuration file logstash.conf:
input { docker { endpoint => "unix:///var/run/docker.sock" container_id => "ALL" } } filter { grok { match => { "message" => "%{COMBINEDAPACHELOG}" } } } output { elasticsearch { hosts => "localhost:9200" } stdout { codec => "json_lines" } }
The above configuration file means that we need to collect log information from all docker containers, filter and parse the data through the grok filter, and finally output the processed data into Elasticsearch.
4. Use Elasticsearch for data indexing and storage
Elasticsearch is a distributed open source search engine that can be used to search various types of documents. In the log collection of Docker containers, we will use Elasticsearch as the index and storage of data. The following is an example of using Elasticsearch for data indexing and storage:
1. Install Elasticsearch
Download Elasticsearch from the official website and unzip the file to use. The command to start Elasticsearch is as follows:
cd elasticsearch-7.15.1/bin ./elasticsearch
2. Configure Elasticsearch
Configure the name and node name of the ES cluster by modifying the elasticsearch.yml file. The following is a simple elasticsearch.yml configuration file example:
cluster.name: docker-cluster node.name: es-node1 network.host: 0.0.0.0
The above configuration means that we create a cluster named docker-cluster, where the node name is es-node1, and the ES service is bound to all available on the network interface.
3. Create an index
In Elasticsearch, we need to first create an index for the data and specify the fields in the data. The sample code is as follows:
PUT /logstash-test { "mappings": { "properties": { "host": { "type": "keyword" }, "message": { "type": "text" }, "path": { "type": "text" }, "verb": { "type": "keyword" } } } }
The above code creates an index named "logstash-test" in Elasticsearch and defines the fields and field types included in the index.
5. Use Kibana for data visualization display
Kibana is an open source data visualization tool that can be used to display data obtained from Elasticsearch. During the log collection process of Docker containers, we will use Kibana for data visualization display. The following is an example of using Kibana for data visualization display:
1. Install Kibana
Download Kibana from the official website and unzip the file to use. The command to start Kibana is as follows:
cd kibana-7.15.1/bin ./kibana
2. Index template settings
In Kibana, we need to set up the index template. The index template contains data field definitions and query analysis information. The sample code is as follows:
PUT _index_template/logstash-template { "index_patterns": ["logstash-*"], "template": { "mappings": { "properties": { "@timestamp": { "type": "date" }, "@version": { "type": "keyword" }, "message": { "type": "text" }, "path": { "type": "text" } } } } }
The above code means that an index template named "logstash-template" is created and applied to indexes whose names start with "logstash-*".
3. Data visualization
На панели плагинов Kibana вы можете устанавливать визуальные шаблоны и управлять ими. С помощью панели мы можем легко создавать различные типы визуальных диаграмм, такие как линейные диаграммы, гистограммы, круговые диаграммы и т. д.
Подводя итог, в этой статье рассказывается, как использовать Docker для анализа журналов контейнеров и мониторинга исключений, а также приводятся конкретные примеры кода. Сам Docker предоставляет команду log для просмотра журналов контейнера, но просмотр журналов вручную становится сложнее по мере увеличения масштаба контейнера. Используя такие инструменты, как Logstash, Elasticsearch и Kibana, мы можем автоматически собирать и анализировать журналы контейнера и отображать рабочее состояние контейнера, что очень полезно для работы и обслуживания приложений, а также для обработки сбоев.
The above is the detailed content of How to use Docker for container log analysis and exception monitoring. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



How to use Docker Desktop? Docker Desktop is a tool for running Docker containers on local machines. The steps to use include: 1. Install Docker Desktop; 2. Start Docker Desktop; 3. Create Docker image (using Dockerfile); 4. Build Docker image (using docker build); 5. Run Docker container (using docker run).

To get the Docker version, you can perform the following steps: Run the Docker command "docker --version" to view the client and server versions. For Mac or Windows, you can also view version information through the Version tab of the Docker Desktop GUI or the About Docker Desktop menu.

Steps to create a Docker image: Write a Dockerfile that contains the build instructions. Build the image in the terminal, using the docker build command. Tag the image and assign names and tags using the docker tag command.

You can switch to the domestic mirror source. The steps are as follows: 1. Edit the configuration file /etc/docker/daemon.json and add the mirror source address; 2. After saving and exiting, restart the Docker service sudo systemctl restart docker to improve the image download speed and stability.

To save the image in Docker, you can use the docker commit command to create a new image, containing the current state of the specified container, syntax: docker commit [Options] Container ID Image name. To save the image to the repository, you can use the docker push command, syntax: docker push image name [: tag]. To import saved images, you can use the docker pull command, syntax: docker pull image name [: tag].

The steps to update a Docker image are as follows: Pull the latest image tag New image Delete the old image for a specific tag (optional) Restart the container (if needed)

You can query the Docker container name by following the steps: List all containers (docker ps). Filter the container list (using the grep command). Gets the container name (located in the "NAMES" column).

Docker LNMP container call steps: Run the container: docker run -d --name lnmp-container -p 80:80 -p 443:443 lnmp-stack to get the container IP: docker inspect lnmp-container | grep IPAddress access website: http://<Container IP>/index.phpSSH access: docker exec -it lnmp-container bash access MySQL: mysql -u roo
