How to use Docker for container monitoring and alarm processing
1. Introduction
With the widespread application of container technology, container monitoring and alarm processing have become increasingly important. Docker is currently one of the most popular container management platforms. This article will introduce how to use Docker for container monitoring and alarm processing, and give specific code examples.
2. Monitor Docker containers
import docker client = docker.DockerClient(base_url='unix://var/run/docker.sock') def monitor_container(container_id): container = client.containers.get(container_id) stats = container.stats(stream=False) print(stats) if __name__ == '__main__': monitor_container('CONTAINER_ID')
First, we need to install and start Prometheus and cAdvisor. Then add the following content to the Prometheus configuration file prometheus.yml
:
scrape_configs: - job_name: 'cadvisor' scrape_interval: 5s static_configs: - targets: ['cadvisor:8080']
Next, use the client library provided by Prometheus in Python to query and process the container's monitoring data. Specific code examples are as follows:
from prometheus_api_client import PrometheusConnect prometheus = PrometheusConnect(url='http://localhost:9090') def get_container_cpu_usage(container_id): query = 'sum(rate(container_cpu_usage_seconds_total{container_label_com_docker_swarm_service_id="%s"}[5m]))' % (container_id) result = prometheus.custom_query(query) return result['data']['result'] if __name__ == '__main__': container_id = 'CONTAINER_ID' cpu_usage = get_container_cpu_usage(container_id) print(cpu_usage)
3. Alarm processing
import docker import smtplib from email.mime.text import MIMEText client = docker.DockerClient(base_url='unix://var/run/docker.sock') def monitor_container(container_id): container = client.containers.get(container_id) stats = container.stats(stream=False) # 检查某个指标是否超过阈值,这里以CPU使用率为例 cpu_usage = stats['cpu_stats']['cpu_usage']['total_usage'] cpu_limit = stats['cpu_stats']['cpu_usage']['percpu_usage'].size cpu_usage_percent = cpu_usage / cpu_limit * 100 if cpu_usage_percent > 80: send_alert_email(container_id, cpu_usage_percent) def send_alert_email(container_id, cpu_usage_percent): msg = MIMEText('容器 %s 的CPU使用率超过80%%,当前使用率为%.2f%%' % (container_id, cpu_usage_percent), 'plain', 'utf-8') msg['Subject'] = '容器告警' msg['From'] = 'alert@example.com' msg['To'] = 'admin@example.com' server = smtplib.SMTP('smtp.example.com') server.login('username', 'password') server.sendmail('alert@example.com', ['admin@example.com'], msg.as_string()) server.quit() if __name__ == '__main__': monitor_container('CONTAINER_ID')
4. Summary
This article introduces how to use Docker for container monitoring and alarm processing, and gives specific code examples. Container monitoring and alarm handling are very important to ensure the stability and reliability of container operation. I hope this article will be helpful to you.
The above is the detailed content of How to use Docker for container monitoring and alarm handling. For more information, please follow other related articles on the PHP Chinese website!