Table of Contents
Lessons from the Global Pandemic
Anticipating Healthcare Issues
SET PARAMETERS
ease worries
The Future is Now
Home Technology peripherals AI Uncovering the potential of AI and ML in healthcare

Uncovering the potential of AI and ML in healthcare

Nov 13, 2023 pm 05:13 PM
AI machine learning

In healthcare, artificial intelligence (AI) and machine learning (ML) are gradually bringing significant advancements in patient care, diagnosis, and treatment. These cutting-edge technologies have revolutionized the healthcare industry, improving accuracy, efficiency and personalized care. Early disease detection, precision medicine, advances in medical imaging, virtual health assistants and drug discovery are examples of how these technologies are reshaping the practice of healthcare.

Uncovering the potential of AI and ML in healthcare

As artificial intelligence and machine learning develop, the industry will experience further transformative advances, empowering healthcare professionals and benefiting patients around the world. By adopting these technologies responsibly and ethically, healthcare providers and patients will work together to unlock the full potential of artificial intelligence and machine learning and shape the future of healthcare.

Lessons from the Global Pandemic

The COVID-19 outbreak came with little warning, and technology played a vital role in communications, diagnosis, treatment, data security, and epidemiology. Pfizer used artificial intelligence and machine learning to develop the first vaccines against the deadly virus, which were evaluated and approved for emergency use in less than 12 months. Going forward, artificial intelligence and machine learning will make clinical trials faster and more accurate to stay ahead of potential future epidemics.

In July, the Coalition for Epidemic Preparedness Innovations (CEPI) committed nearly $5 million to an organization led by Houston Methodist Research Institute that identifies emerging viruses. In May, the U.S. Food and Drug Administration (FDA) released two papers discussing the potential of AI/ML in drug development and manufacturing. According to the FDA, AI/ML “has the potential to transform the way stakeholders develop, manufacture, use, and evaluate therapies. Ultimately, AI/ML can help bring safe, effective, and high-quality treatments to patients more quickly.”

Anticipating Healthcare Issues

Many healthcare companies are leveraging these technologies to improve healthcare for their customers. At Johns Hopkins University, an artificial intelligence system is being used to detect patients' risk of sepsis faster than traditional methods. Suchi Saria, founding research director of the Malone Center for Healthcare Engineering at Johns Hopkins University, said: "This is the first time artificial intelligence is being used at the bedside and is being used by thousands of healthcare providers, and we are seeing lives saved."

This technology could eventually have direct applications outside of healthcare as well. For example, the Apple Watch can already monitor a person's heart rate, blood pressure, and whether the wearer has any irregular rhythms. With advances in artificial intelligence/machine learning, the watch could also be trained to notify the wearer when they are having a heart attack and tell them to contact a doctor or go to the emergency room

Additionally, chatbots and virtual health Assistants will be able to help patients in real time—for example, determining whether a child with a fever needs to take fever-reducing medication or whether a child's symptoms warrant a trip to the emergency room. Data sets created through AI/ML models will be important in addressing the global pandemic through clinical trials, developing effective vaccines, predicting potential patient problems, providing more effective diagnostics, and improving patient care

SET PARAMETERS

One of the attractive things about AI/ML models is that they can self-update and learn by themselves. As long as you have cloud computing power, the more data you provide and the more you interact with the AI, the faster the model can provide more accurate answers.

Initially, data science engineers need to provide the parameters of the data set to the healthcare provider. For example, using historical data and information from electronic health records (EHRs), training models can be created for people with specific health conditions. These models can then decide which medication to use, and the virtual assistant can generate those prescriptions and medications.

Of course, this also means that these trainings must be based on the principle of not violating corresponding laws and regulations, such as the Health Insurance Portability and Accountability Act (HIPAA), Patient Privacy Impact Assessment (PIA), and not omitting personally identifiable information. (PII). When training the model, engineers must ensure they only input the patient's age, gender, occupation and medical condition. This means it is the responsibility of the healthcare provider to verify that they do not include HIPAA or PIA information in the information they provide to engineers.

ease worries

It’s understandable that some people are still worried. One of the biggest concerns for healthcare providers is privacy. It is important for providers to create training models specific to their organization to ensure data never leaves their premises. Another major issue is the accuracy of the data. Therefore, companies should be encouraged to take the necessary time to create their training models. It can take three to six months for AI to generate and validate accurate results; however, once companies start seeing these accurate results on a regular basis, they will feel more confident in the model's predictions.

The Future is Now

For patients receiving this new technology, they still want to know there is a human element and that they can talk to a doctor or nurse if needed. Providers, doctors, nurses, and research scientists are essential components of health care. The healthcare industry directly impacts humanity. That’s why it’s equally important to train nurses, doctors, and clinical researchers, as well as the data engineers who create models, so that they have a basic understanding of artificial intelligence and machine learning and how to properly use historical data.

The potential for artificial intelligence and machine learning in the industry to make significant advances in better healthcare is exciting and innovative, reducing the time to conduct clinical trial studies and delivering potential aid to market faster. and treatment, providing telemedicine to remote countries and regions and providing greater accuracy in predicting patient disease. Acceptance of this rapidly evolving technology in the industry is critical for both suppliers and practitioners.

The above is the detailed content of Uncovering the potential of AI and ML in healthcare. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: How To Unlock Everything In MyRise
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Bytedance Cutting launches SVIP super membership: 499 yuan for continuous annual subscription, providing a variety of AI functions Bytedance Cutting launches SVIP super membership: 499 yuan for continuous annual subscription, providing a variety of AI functions Jun 28, 2024 am 03:51 AM

This site reported on June 27 that Jianying is a video editing software developed by FaceMeng Technology, a subsidiary of ByteDance. It relies on the Douyin platform and basically produces short video content for users of the platform. It is compatible with iOS, Android, and Windows. , MacOS and other operating systems. Jianying officially announced the upgrade of its membership system and launched a new SVIP, which includes a variety of AI black technologies, such as intelligent translation, intelligent highlighting, intelligent packaging, digital human synthesis, etc. In terms of price, the monthly fee for clipping SVIP is 79 yuan, the annual fee is 599 yuan (note on this site: equivalent to 49.9 yuan per month), the continuous monthly subscription is 59 yuan per month, and the continuous annual subscription is 499 yuan per year (equivalent to 41.6 yuan per month) . In addition, the cut official also stated that in order to improve the user experience, those who have subscribed to the original VIP

Context-augmented AI coding assistant using Rag and Sem-Rag Context-augmented AI coding assistant using Rag and Sem-Rag Jun 10, 2024 am 11:08 AM

Improve developer productivity, efficiency, and accuracy by incorporating retrieval-enhanced generation and semantic memory into AI coding assistants. Translated from EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, author JanakiramMSV. While basic AI programming assistants are naturally helpful, they often fail to provide the most relevant and correct code suggestions because they rely on a general understanding of the software language and the most common patterns of writing software. The code generated by these coding assistants is suitable for solving the problems they are responsible for solving, but often does not conform to the coding standards, conventions and styles of the individual teams. This often results in suggestions that need to be modified or refined in order for the code to be accepted into the application

Can fine-tuning really allow LLM to learn new things: introducing new knowledge may make the model produce more hallucinations Can fine-tuning really allow LLM to learn new things: introducing new knowledge may make the model produce more hallucinations Jun 11, 2024 pm 03:57 PM

Large Language Models (LLMs) are trained on huge text databases, where they acquire large amounts of real-world knowledge. This knowledge is embedded into their parameters and can then be used when needed. The knowledge of these models is "reified" at the end of training. At the end of pre-training, the model actually stops learning. Align or fine-tune the model to learn how to leverage this knowledge and respond more naturally to user questions. But sometimes model knowledge is not enough, and although the model can access external content through RAG, it is considered beneficial to adapt the model to new domains through fine-tuning. This fine-tuning is performed using input from human annotators or other LLM creations, where the model encounters additional real-world knowledge and integrates it

Seven Cool GenAI & LLM Technical Interview Questions Seven Cool GenAI & LLM Technical Interview Questions Jun 07, 2024 am 10:06 AM

To learn more about AIGC, please visit: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou is different from the traditional question bank that can be seen everywhere on the Internet. These questions It requires thinking outside the box. Large Language Models (LLMs) are increasingly important in the fields of data science, generative artificial intelligence (GenAI), and artificial intelligence. These complex algorithms enhance human skills and drive efficiency and innovation in many industries, becoming the key for companies to remain competitive. LLM has a wide range of applications. It can be used in fields such as natural language processing, text generation, speech recognition and recommendation systems. By learning from large amounts of data, LLM is able to generate text

To provide a new scientific and complex question answering benchmark and evaluation system for large models, UNSW, Argonne, University of Chicago and other institutions jointly launched the SciQAG framework To provide a new scientific and complex question answering benchmark and evaluation system for large models, UNSW, Argonne, University of Chicago and other institutions jointly launched the SciQAG framework Jul 25, 2024 am 06:42 AM

Editor |ScienceAI Question Answering (QA) data set plays a vital role in promoting natural language processing (NLP) research. High-quality QA data sets can not only be used to fine-tune models, but also effectively evaluate the capabilities of large language models (LLM), especially the ability to understand and reason about scientific knowledge. Although there are currently many scientific QA data sets covering medicine, chemistry, biology and other fields, these data sets still have some shortcomings. First, the data form is relatively simple, most of which are multiple-choice questions. They are easy to evaluate, but limit the model's answer selection range and cannot fully test the model's ability to answer scientific questions. In contrast, open-ended Q&A

Five schools of machine learning you don't know about Five schools of machine learning you don't know about Jun 05, 2024 pm 08:51 PM

Machine learning is an important branch of artificial intelligence that gives computers the ability to learn from data and improve their capabilities without being explicitly programmed. Machine learning has a wide range of applications in various fields, from image recognition and natural language processing to recommendation systems and fraud detection, and it is changing the way we live. There are many different methods and theories in the field of machine learning, among which the five most influential methods are called the "Five Schools of Machine Learning". The five major schools are the symbolic school, the connectionist school, the evolutionary school, the Bayesian school and the analogy school. 1. Symbolism, also known as symbolism, emphasizes the use of symbols for logical reasoning and expression of knowledge. This school of thought believes that learning is a process of reverse deduction, through existing

SOTA performance, Xiamen multi-modal protein-ligand affinity prediction AI method, combines molecular surface information for the first time SOTA performance, Xiamen multi-modal protein-ligand affinity prediction AI method, combines molecular surface information for the first time Jul 17, 2024 pm 06:37 PM

Editor | KX In the field of drug research and development, accurately and effectively predicting the binding affinity of proteins and ligands is crucial for drug screening and optimization. However, current studies do not take into account the important role of molecular surface information in protein-ligand interactions. Based on this, researchers from Xiamen University proposed a novel multi-modal feature extraction (MFE) framework, which for the first time combines information on protein surface, 3D structure and sequence, and uses a cross-attention mechanism to compare different modalities. feature alignment. Experimental results demonstrate that this method achieves state-of-the-art performance in predicting protein-ligand binding affinities. Furthermore, ablation studies demonstrate the effectiveness and necessity of protein surface information and multimodal feature alignment within this framework. Related research begins with "S

Laying out markets such as AI, GlobalFoundries acquires Tagore Technology's gallium nitride technology and related teams Laying out markets such as AI, GlobalFoundries acquires Tagore Technology's gallium nitride technology and related teams Jul 15, 2024 pm 12:21 PM

According to news from this website on July 5, GlobalFoundries issued a press release on July 1 this year, announcing the acquisition of Tagore Technology’s power gallium nitride (GaN) technology and intellectual property portfolio, hoping to expand its market share in automobiles and the Internet of Things. and artificial intelligence data center application areas to explore higher efficiency and better performance. As technologies such as generative AI continue to develop in the digital world, gallium nitride (GaN) has become a key solution for sustainable and efficient power management, especially in data centers. This website quoted the official announcement that during this acquisition, Tagore Technology’s engineering team will join GLOBALFOUNDRIES to further develop gallium nitride technology. G

See all articles