Data governance blueprint in the GenAI era
As we move deeper into the world of ML and GenAI, an emphasis on data quality becomes critical. John Jeske, CTO of KMS Technology's Advanced Technology Innovation Group, delves into data governance methods such as data lineage tracking and federated learning to ensure top model performance.
Data quality is key to model sustainability and stakeholder trust. During the modeling process, data quality makes long-term maintenance easier and enables you to build user confidence and confidence among your stakeholder community. The effects of ‘garbage in, garbage out’ are exacerbated in complex models, including large-scale languages and generative algorithms. "Jeske said.
Genetic AI Bias and Data Representative Issues
No matter which model you choose for your use case, poor data quality will inevitably lead to distortion of GenAI models. Pitfalls are often From training data that misrepresents the scope of the company, customer base, or application scope.
The real wealth is in the data itself, not the ephemeral model or modeling structure. Over the past few months , with the emergence of a large number of modeling frameworks, the value of data as a monetizable asset has become more prominent
Jeff Scott, senior vice president of software services at KMS Technology, further explained: "When the content generated by AI is consistent with the expected output When there is a bias, it is not an algorithm error, but a reflection of insufficient or distorted training data
Strict data integrity governance
Best practices for data governance include metadata management, data management and automation Quality inspection and other activities. For example, ensure the reliability of data sources, use certified datasets when acquiring data for training and modeling, and consider using automated data quality tools. Although this may add complexity, these tools are very helpful in ensuring data integrity
To improve data quality, we use tools that provide properties such as data validity, integrity checks, and time consistency, which Promotes reliable, consistent data, which is essential for robust AI models.
Accountability and continuous improvement in AI development
In everyone’s eyes, data is a problem. Within a company, assigning responsibility for data governance is an important task
The most important thing is to ensure that features work as designed and that the data being trained on makes sense from a potential customer's perspective. Feedback enhances learning, which is then taken into account the next time the model is trained, invoking continuous improvement until the point of trust.
In our workflow, AI and ML models undergo rigorous internal testing before being launched publicly. The data engineering team receives continuous feedback, allowing iterative improvements to the model to minimize biases and other anomalies
Risk Management and Customer Trust
Data governance needs to be implemented in relevant business areas Conduct data management and require ongoing involvement of subject matter experts to ensure data across teams and systems is appropriately curated and consistently accountable
Must understand the risks associated with receiving inaccurate results from technology, companies Transparency must be assessed, from data origins and handling of intellectual property to overall data quality and completeness.
Transparency is integral to customer trust, and data governance is not just a technical exercise, it can also impact a company’s reputation as risks are transferred from inaccurate AI predictions to end users.
With the continuous development of GenAI, mastering data governance has become increasingly important. This is not only to ensure data quality, but also to understand the complex relationship between data and AI models. This insight is critical to technological advancement, business health and maintaining the trust of stakeholders and the wider public
The above is the detailed content of Data governance blueprint in the GenAI era. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



This site reported on June 27 that Jianying is a video editing software developed by FaceMeng Technology, a subsidiary of ByteDance. It relies on the Douyin platform and basically produces short video content for users of the platform. It is compatible with iOS, Android, and Windows. , MacOS and other operating systems. Jianying officially announced the upgrade of its membership system and launched a new SVIP, which includes a variety of AI black technologies, such as intelligent translation, intelligent highlighting, intelligent packaging, digital human synthesis, etc. In terms of price, the monthly fee for clipping SVIP is 79 yuan, the annual fee is 599 yuan (note on this site: equivalent to 49.9 yuan per month), the continuous monthly subscription is 59 yuan per month, and the continuous annual subscription is 499 yuan per year (equivalent to 41.6 yuan per month) . In addition, the cut official also stated that in order to improve the user experience, those who have subscribed to the original VIP

Improve developer productivity, efficiency, and accuracy by incorporating retrieval-enhanced generation and semantic memory into AI coding assistants. Translated from EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, author JanakiramMSV. While basic AI programming assistants are naturally helpful, they often fail to provide the most relevant and correct code suggestions because they rely on a general understanding of the software language and the most common patterns of writing software. The code generated by these coding assistants is suitable for solving the problems they are responsible for solving, but often does not conform to the coding standards, conventions and styles of the individual teams. This often results in suggestions that need to be modified or refined in order for the code to be accepted into the application

Large Language Models (LLMs) are trained on huge text databases, where they acquire large amounts of real-world knowledge. This knowledge is embedded into their parameters and can then be used when needed. The knowledge of these models is "reified" at the end of training. At the end of pre-training, the model actually stops learning. Align or fine-tune the model to learn how to leverage this knowledge and respond more naturally to user questions. But sometimes model knowledge is not enough, and although the model can access external content through RAG, it is considered beneficial to adapt the model to new domains through fine-tuning. This fine-tuning is performed using input from human annotators or other LLM creations, where the model encounters additional real-world knowledge and integrates it

To learn more about AIGC, please visit: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou is different from the traditional question bank that can be seen everywhere on the Internet. These questions It requires thinking outside the box. Large Language Models (LLMs) are increasingly important in the fields of data science, generative artificial intelligence (GenAI), and artificial intelligence. These complex algorithms enhance human skills and drive efficiency and innovation in many industries, becoming the key for companies to remain competitive. LLM has a wide range of applications. It can be used in fields such as natural language processing, text generation, speech recognition and recommendation systems. By learning from large amounts of data, LLM is able to generate text

Editor |ScienceAI Question Answering (QA) data set plays a vital role in promoting natural language processing (NLP) research. High-quality QA data sets can not only be used to fine-tune models, but also effectively evaluate the capabilities of large language models (LLM), especially the ability to understand and reason about scientific knowledge. Although there are currently many scientific QA data sets covering medicine, chemistry, biology and other fields, these data sets still have some shortcomings. First, the data form is relatively simple, most of which are multiple-choice questions. They are easy to evaluate, but limit the model's answer selection range and cannot fully test the model's ability to answer scientific questions. In contrast, open-ended Q&A

Machine learning is an important branch of artificial intelligence that gives computers the ability to learn from data and improve their capabilities without being explicitly programmed. Machine learning has a wide range of applications in various fields, from image recognition and natural language processing to recommendation systems and fraud detection, and it is changing the way we live. There are many different methods and theories in the field of machine learning, among which the five most influential methods are called the "Five Schools of Machine Learning". The five major schools are the symbolic school, the connectionist school, the evolutionary school, the Bayesian school and the analogy school. 1. Symbolism, also known as symbolism, emphasizes the use of symbols for logical reasoning and expression of knowledge. This school of thought believes that learning is a process of reverse deduction, through existing

Editor | KX In the field of drug research and development, accurately and effectively predicting the binding affinity of proteins and ligands is crucial for drug screening and optimization. However, current studies do not take into account the important role of molecular surface information in protein-ligand interactions. Based on this, researchers from Xiamen University proposed a novel multi-modal feature extraction (MFE) framework, which for the first time combines information on protein surface, 3D structure and sequence, and uses a cross-attention mechanism to compare different modalities. feature alignment. Experimental results demonstrate that this method achieves state-of-the-art performance in predicting protein-ligand binding affinities. Furthermore, ablation studies demonstrate the effectiveness and necessity of protein surface information and multimodal feature alignment within this framework. Related research begins with "S

According to news from this site on August 1, SK Hynix released a blog post today (August 1), announcing that it will attend the Global Semiconductor Memory Summit FMS2024 to be held in Santa Clara, California, USA from August 6 to 8, showcasing many new technologies. generation product. Introduction to the Future Memory and Storage Summit (FutureMemoryandStorage), formerly the Flash Memory Summit (FlashMemorySummit) mainly for NAND suppliers, in the context of increasing attention to artificial intelligence technology, this year was renamed the Future Memory and Storage Summit (FutureMemoryandStorage) to invite DRAM and storage vendors and many more players. New product SK hynix launched last year
