


What are the commonly used functions in the pandas library?
Commonly used functions in the pandas library include: 1. read_csv() and read_excel() functions; 2. head() and tail() functions; 3. info() function; 4. describe() function, etc. Detailed introduction: 1. read_csv() and read_excel() functions. These two functions are used to read data from CSV and Excel files. They can read the data into data frame objects to facilitate further data analysis; 2. head () and tail() functions, etc.
The operating system for this tutorial: Windows 10 system, DELL G3 computer.
Pandas is a powerful Python data analysis library that provides many commonly used functions. The following are some common functions of the Pandas library:
1, read_csv() and read_excel() functions
These two functions are used to read data from CSV and Excel files. They can read data into DataFrame objects to facilitate further data analysis.
Sample code:
import pandas as pd df = pd.read_csv('file_path.csv') # 从CSV文件中读取数据 df = pd.read_excel('file_path.xlsx', sheet_name='Sheet1') # 从名为'Sheet1'的Excel工作表中读取数据
2, head() and tail() functions
These two functions are used to obtain the first n rows or last n rows of data of the data frame . They make it easy to view the first or last few rows of a data set without loading the entire data set into memory.
Sample code:
import pandas as pd df = pd.read_csv('file_path.csv') df.head(5) # 获取前5行数据 df.tail(3) # 获取后3行数据
3. info() function
info() function can provide basic information of the data frame, including the shape of the data frame, column names, and each Column data type, etc. It helps us quickly understand the structure of the data frame.
Sample code:
import pandas as pd df = pd.read_csv('file_path.csv') df.info() # 查看数据框的基本信息
4. describe() function
describe() function can provide descriptive statistics of each column of data in the data frame, including count, average value, standard deviation, minimum value, maximum value, etc. It can help us quickly understand the distribution of data in each column of the data frame.
Sample code:
import pandas as pd df = pd.read_csv('file_path.csv') df.describe() # 查看数据框中每列数据的描述性统计信息
The above is the detailed content of What are the commonly used functions in the pandas library?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Pandas installation tutorial: Analysis of common installation errors and their solutions, specific code examples are required Introduction: Pandas is a powerful data analysis tool that is widely used in data cleaning, data processing, and data visualization, so it is highly respected in the field of data science . However, due to environment configuration and dependency issues, you may encounter some difficulties and errors when installing pandas. This article will provide you with a pandas installation tutorial and analyze some common installation errors and their solutions. 1. Install pandas

How to use pandas to read txt files correctly requires specific code examples. Pandas is a widely used Python data analysis library. It can be used to process a variety of data types, including CSV files, Excel files, SQL databases, etc. At the same time, it can also be used to read text files, such as txt files. However, when reading txt files, we sometimes encounter some problems, such as encoding problems, delimiter problems, etc. This article will introduce how to read txt correctly using pandas

Python can install pandas by using pip, using conda, from source code, and using the IDE integrated package management tool. Detailed introduction: 1. Use pip and run the pip install pandas command in the terminal or command prompt to install pandas; 2. Use conda and run the conda install pandas command in the terminal or command prompt to install pandas; 3. From Source code installation and more.

Pandas is a powerful data analysis tool that can easily read and process various types of data files. Among them, CSV files are one of the most common and commonly used data file formats. This article will introduce how to use Pandas to read CSV files and perform data analysis, and provide specific code examples. 1. Import the necessary libraries First, we need to import the Pandas library and other related libraries that may be needed, as shown below: importpandasaspd 2. Read the CSV file using Pan

Steps to install pandas in python: 1. Open the terminal or command prompt; 2. Enter the "pip install pandas" command to install the pandas library; 3. Wait for the installation to complete, and you can import and use the pandas library in the Python script; 4. Use It is a specific virtual environment. Make sure to activate the corresponding virtual environment before installing pandas; 5. If you are using an integrated development environment, you can add the "import pandas as pd" code to import the pandas library.

Practical tips for reading txt files using pandas, specific code examples are required. In data analysis and data processing, txt files are a common data format. Using pandas to read txt files allows for fast and convenient data processing. This article will introduce several practical techniques to help you better use pandas to read txt files, along with specific code examples. Reading txt files with delimiters When using pandas to read txt files with delimiters, you can use read_c

The secret of Pandas deduplication method: a fast and efficient way to deduplicate data, which requires specific code examples. In the process of data analysis and processing, duplication in the data is often encountered. Duplicate data may mislead the analysis results, so deduplication is a very important step. Pandas, a powerful data processing library, provides a variety of methods to achieve data deduplication. This article will introduce some commonly used deduplication methods, and attach specific code examples. The most common case of deduplication based on a single column is based on whether the value of a certain column is duplicated.

Data processing tool: Pandas reads data in SQL databases and requires specific code examples. As the amount of data continues to grow and its complexity increases, data processing has become an important part of modern society. In the data processing process, Pandas has become one of the preferred tools for many data analysts and scientists. This article will introduce how to use the Pandas library to read data from a SQL database and provide some specific code examples. Pandas is a powerful data processing and analysis tool based on Python
