Table of Contents
Self-supervised learning framework KPGT
Research Limitations
Home Technology peripherals AI Tsinghua team proposes knowledge-guided graph Transformer pre-training framework: a method to improve molecular representation learning

Tsinghua team proposes knowledge-guided graph Transformer pre-training framework: a method to improve molecular representation learning

Nov 23, 2023 pm 06:17 PM
getting Started

清华团队提出知识引导的图 Transformer 预训练框架:提高分子表征学习的方法

Editor | Ziluo

In order to facilitate molecular property prediction, in the field of drug discovery, it is very important to learn effective molecular feature representations. Recently, people have overcome the challenge of data scarcity by pre-training graph neural networks (GNN) using self-supervised learning techniques. However, there are two main problems with current methods based on self-supervised learning: the lack of clear self-supervised learning strategies and the limited capabilities of GNN

Recently, a research team from Tsinghua University, West Lake University and Zhijiang Laboratory, We propose Knowledge-guided Pre-training of Graph Transformer (KPGT), a self-supervised learning framework that provides improved, generalizable and robust learning through significantly enhanced molecular representation learning. Molecular property prediction. The KPGT framework integrates a graph Transformer designed specifically for molecular graphs and a knowledge-guided pre-training strategy to fully capture the structural and semantic knowledge of molecules.

Through extensive computational testing on 63 data sets, KPGT has demonstrated superior performance in predicting molecular properties in various fields. Furthermore, the practical applicability of KPGT in drug discovery was verified by identifying potential inhibitors of two antitumor targets. Overall, KPGT can provide a powerful and useful tool for advancing the AI-assisted drug discovery process.

The research was titled "A knowledge-guided pre-training framework for improving molecular representation learning" and was published in "Nature Communications" on November 21, 2023.

清华团队提出知识引导的图 Transformer 预训练框架:提高分子表征学习的方法

Determining molecular properties experimentally requires significant time and resources, and identifying molecules with desired properties is one of the most significant challenges in drug discovery. In recent years, artificial intelligence-based methods have played an increasingly important role in predicting molecular properties. One of the main challenges of artificial intelligence-based methods for predicting molecular properties is the characterization of molecules

In recent years, the emergence of deep learning-based methods has emerged as a potentially useful tool for predicting molecular properties, mainly because they have the ability to transform from simple inputs Excellent ability to automatically extract effective features from data. Notably, various neural network architectures, including recurrent neural networks (RNN), convolutional neural networks (CNN), and graph neural networks (GNN), are adept at modeling molecular data in various formats, ranging from simplified molecular inputs to Line input system (SMILES) to molecular images and molecular diagrams. However, the limited availability of marker molecules and the vastness of chemical space limit their predictive performance, especially when dealing with out-of-distribution data samples.

With the remarkable achievements of self-supervised learning methods in the fields of natural language processing and computer vision, these techniques have been applied to pre-train GNNs and improve representation learning of molecules, thereby achieving success in downstream molecular property prediction tasks. Substantial progress has been made

The researchers hypothesize that introducing additional knowledge that quantitatively describes molecular characteristics into a self-supervised learning framework can effectively address these challenges. Molecules have many quantitative characteristics, such as molecular descriptors and fingerprints, that can be easily obtained with currently established computational tools. Integrating this additional knowledge can introduce rich molecular semantic information into self-supervised learning, thereby greatly enhancing the acquisition of semantically rich molecular representations.

Generally, existing self-supervised learning methods rely on GNN as the core model. However, GNN has limited model capacity. Furthermore, GNNs can have difficulty capturing long-range interactions between atoms. And Transformer-based models have become a game-changing model. It is characterized by an increasing number of parameters and the ability to capture long-range interactions, providing a promising approach to comprehensively simulating the structural characteristics of molecules

Self-supervised learning framework KPGT

In this study, the researchers introduced a self-supervised learning framework called KPGT, which aims to enhance molecular representation learning to promote downstream molecular property prediction tasks. The KPGT framework consists of two main components: a backbone model called Line Graph Transformer (LiGhT) and a knowledge-guided pre-training policy. The KPGT framework combines the high-capacity LiGhT model, which is specifically designed to accurately model molecular graph structures, and utilizes a knowledge-guided pre-training strategy to capture molecular structure and semantic knowledge

The research team used About 2 million molecules, LiGhT was pre-trained through a knowledge-guided pre-training strategy

清华团队提出知识引导的图 Transformer 预训练框架:提高分子表征学习的方法

Rewritten content: Figure: KPGT Overview. (Source: paper)

KPGT outperforms baseline methods in molecular property prediction. Compared with several baseline methods, KPGT achieves significant improvements on 63 datasets.

清华团队提出知识引导的图 Transformer 预训练框架:提高分子表征学习的方法

Illustration: Comparative evaluation of KPGT and baseline methods in predicting molecular properties. (Source: paper)

In addition, by successfully using KPGT to identify potential inhibitors of two anti-tumor targets, hematopoietic progenitor kinase 1 (HPK1) and fibroblast growth factor receptor (FGFR1), it was demonstrated Practical applicability of KPGT.

清华团队提出知识引导的图 Transformer 预训练框架:提高分子表征学习的方法

Illustration: Identification of HPK1 inhibitors using KPGT. (Source: Paper)

清华团队提出知识引导的图 Transformer 预训练框架:提高分子表征学习的方法

#Illustration: Identification of FGFR1 inhibitors using KPGT. (Source: Paper)

Research Limitations

Despite the advantages of KPGT in effective molecular property prediction, there are still some limitations.

  • First of all, the integration of additional knowledge is the most significant feature of the proposed method. In addition to the 200 molecular descriptors and 512 RDKFPs used in KPGT, there is the potential to incorporate various other types of additional information knowledge.
  • Additionally, further research could integrate three-dimensional (3D) molecular conformation into the pre-training process, allowing the model to capture important 3D information about the molecule and potentially enhance representation learning. ability.
  • While KPGT currently employs a backbone model with approximately 100 million parameters and pre-training on 2 million molecules, exploring larger-scale pre-training can provide insights into molecular representation learning. More substantial benefits.

Overall, KPGT provides a powerful self-supervised learning framework for effective molecular representation learning, thereby advancing the field of artificial intelligence-assisted drug discovery.

Paper link: https://www.nature.com/articles/s41467-023-43214-1

The above is the detailed content of Tsinghua team proposes knowledge-guided graph Transformer pre-training framework: a method to improve molecular representation learning. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Chat Commands and How to Use Them
1 months ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

A Diffusion Model Tutorial Worth Your Time, from Purdue University A Diffusion Model Tutorial Worth Your Time, from Purdue University Apr 07, 2024 am 09:01 AM

Diffusion can not only imitate better, but also "create". The diffusion model (DiffusionModel) is an image generation model. Compared with the well-known algorithms such as GAN and VAE in the field of AI, the diffusion model takes a different approach. Its main idea is a process of first adding noise to the image and then gradually denoising it. How to denoise and restore the original image is the core part of the algorithm. The final algorithm is able to generate an image from a random noisy image. In recent years, the phenomenal growth of generative AI has enabled many exciting applications in text-to-image generation, video generation, and more. The basic principle behind these generative tools is the concept of diffusion, a special sampling mechanism that overcomes the limitations of previous methods.

Generate PPT with one click! Kimi: Let the 'PPT migrant workers' become popular first Generate PPT with one click! Kimi: Let the 'PPT migrant workers' become popular first Aug 01, 2024 pm 03:28 PM

Kimi: In just one sentence, in just ten seconds, a PPT will be ready. PPT is so annoying! To hold a meeting, you need to have a PPT; to write a weekly report, you need to have a PPT; to make an investment, you need to show a PPT; even when you accuse someone of cheating, you have to send a PPT. College is more like studying a PPT major. You watch PPT in class and do PPT after class. Perhaps, when Dennis Austin invented PPT 37 years ago, he did not expect that one day PPT would become so widespread. Talking about our hard experience of making PPT brings tears to our eyes. "It took three months to make a PPT of more than 20 pages, and I revised it dozens of times. I felt like vomiting when I saw the PPT." "At my peak, I did five PPTs a day, and even my breathing was PPT." If you have an impromptu meeting, you should do it

All CVPR 2024 awards announced! Nearly 10,000 people attended the conference offline, and a Chinese researcher from Google won the best paper award All CVPR 2024 awards announced! Nearly 10,000 people attended the conference offline, and a Chinese researcher from Google won the best paper award Jun 20, 2024 pm 05:43 PM

In the early morning of June 20th, Beijing time, CVPR2024, the top international computer vision conference held in Seattle, officially announced the best paper and other awards. This year, a total of 10 papers won awards, including 2 best papers and 2 best student papers. In addition, there were 2 best paper nominations and 4 best student paper nominations. The top conference in the field of computer vision (CV) is CVPR, which attracts a large number of research institutions and universities every year. According to statistics, a total of 11,532 papers were submitted this year, and 2,719 were accepted, with an acceptance rate of 23.6%. According to Georgia Institute of Technology’s statistical analysis of CVPR2024 data, from the perspective of research topics, the largest number of papers is image and video synthesis and generation (Imageandvideosyn

From bare metal to a large model with 70 billion parameters, here is a tutorial and ready-to-use scripts From bare metal to a large model with 70 billion parameters, here is a tutorial and ready-to-use scripts Jul 24, 2024 pm 08:13 PM

We know that LLM is trained on large-scale computer clusters using massive data. This site has introduced many methods and technologies used to assist and improve the LLM training process. Today, what we want to share is an article that goes deep into the underlying technology and introduces how to turn a bunch of "bare metals" without even an operating system into a computer cluster for training LLM. This article comes from Imbue, an AI startup that strives to achieve general intelligence by understanding how machines think. Of course, turning a bunch of "bare metal" without an operating system into a computer cluster for training LLM is not an easy process, full of exploration and trial and error, but Imbue finally successfully trained an LLM with 70 billion parameters. and in the process accumulate

Five programming software for getting started with learning C language Five programming software for getting started with learning C language Feb 19, 2024 pm 04:51 PM

As a widely used programming language, C language is one of the basic languages ​​that must be learned for those who want to engage in computer programming. However, for beginners, learning a new programming language can be difficult, especially due to the lack of relevant learning tools and teaching materials. In this article, I will introduce five programming software to help beginners get started with C language and help you get started quickly. The first programming software was Code::Blocks. Code::Blocks is a free, open source integrated development environment (IDE) for

PyCharm Community Edition Installation Guide: Quickly master all the steps PyCharm Community Edition Installation Guide: Quickly master all the steps Jan 27, 2024 am 09:10 AM

Quick Start with PyCharm Community Edition: Detailed Installation Tutorial Full Analysis Introduction: PyCharm is a powerful Python integrated development environment (IDE) that provides a comprehensive set of tools to help developers write Python code more efficiently. This article will introduce in detail how to install PyCharm Community Edition and provide specific code examples to help beginners get started quickly. Step 1: Download and install PyCharm Community Edition To use PyCharm, you first need to download it from its official website

AI in use | AI created a life vlog of a girl living alone, which received tens of thousands of likes in 3 days AI in use | AI created a life vlog of a girl living alone, which received tens of thousands of likes in 3 days Aug 07, 2024 pm 10:53 PM

Editor of the Machine Power Report: Yang Wen The wave of artificial intelligence represented by large models and AIGC has been quietly changing the way we live and work, but most people still don’t know how to use it. Therefore, we have launched the "AI in Use" column to introduce in detail how to use AI through intuitive, interesting and concise artificial intelligence use cases and stimulate everyone's thinking. We also welcome readers to submit innovative, hands-on use cases. Video link: https://mp.weixin.qq.com/s/2hX_i7li3RqdE4u016yGhQ Recently, the life vlog of a girl living alone became popular on Xiaohongshu. An illustration-style animation, coupled with a few healing words, can be easily picked up in just a few days.

A must-read for technical beginners: Analysis of the difficulty levels of C language and Python A must-read for technical beginners: Analysis of the difficulty levels of C language and Python Mar 22, 2024 am 10:21 AM

Title: A must-read for technical beginners: Difficulty analysis of C language and Python, requiring specific code examples In today's digital age, programming technology has become an increasingly important ability. Whether you want to work in fields such as software development, data analysis, artificial intelligence, or just learn programming out of interest, choosing a suitable programming language is the first step. Among many programming languages, C language and Python are two widely used programming languages, each with its own characteristics. This article will analyze the difficulty levels of C language and Python

See all articles