MySQL延迟关联性能优化方法_MySQL
【背景】
某业务数据库load 报警异常,cpu usr 达到30-40 ,居高不下。使用工具查看数据库正在执行的sql ,排在前面的大部分是:
代码如下:
SELECT id, cu_id, name, info, biz_type, gmt_create, gmt_modified,start_time, end_time, market_type, back_leaf_category,item_status,picuture_url FROM relation where biz_type ='0' AND end_time >='2014-05-29' ORDER BY id asc LIMIT 149420 ,20;
表的数据量大致有36w左右,该sql是一个非常典型的排序+分页查询:order by col limit N,OFFSET M , MySQL 执行此类sql时需要先扫描到N行,然后再去取 M行。对于此类大数据量的排序操作,取前面少数几行数据会很快,但是越靠后,sql的性能就会越差,因为N越大,MySQL 需要扫描不需要的数据然后在丢掉,这样耗费大量的时间。
【分析】
针对limit 优化有很多种方式,
1 前端加缓存,减少落到库的查询操作
2 优化SQL
3 使用书签方式 ,记录上次查询最新/大的id值,向后追溯 M行记录。
4 使用Sphinx 搜索优化。
对于第二种方式 我们推荐使用"延迟关联"的方法来优化排序操作,何谓"延迟关联" :通过使用覆盖索引查询返回需要的主键,再根据主键关联原表获得需要的数据。
【解决】
根据延迟关联的思路,修改SQL 如下:
优化前
代码如下:
root@xxx 12:33:48>explain SELECT id, cu_id, name, info, biz_type, gmt_create, gmt_modified,start_time, end_time, market_type, back_leaf_category,item_status,picuture_url FROM relation where biz_type =\'0\' AND end_time >=\'2014-05-29\' ORDER BY id asc LIMIT 149420 ,20;
+----+-------------+-------------+-------+---------------+-------------+---------+------+--------+-----------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------------+-------+---------------+-------------+---------+------+--------+-----------------------------+
| 1 | SIMPLE | relation | range | ind_endtime | ind_endtime | 9 | NULL | 349622 | Using where; Using filesort |
+----+-------------+-------------+-------+---------------+-------------+---------+------+--------+-----------------------------+
1 row in set (0.00 sec)
其执行时间:
优化后:
代码如下:
SELECT a.* FROM relation a, (select id from relation where biz_type ='0' AND end_time >='2014-05-29' ORDER BY id asc LIMIT 149420 ,20 ) b where a.id=b.id
代码如下:
root@xxx 12:33:43>explain SELECT a.* FROM relation a, (select id from relation where biz_type ='0' AND end_time >='2014-05-29' ORDER BY id asc LIMIT 149420 ,20 ) b where a.id=b.id;
+----+-------------+-------------+--------+---------------+---------+---------+------+--------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------------+--------+---------------+---------+---------+------+--------+-------+
| 1 | PRIMARY |
| 1 | PRIMARY | a | eq_ref | PRIMARY | PRIMARY | 8 | b.id | 1 | |
| 2 | DERIVED | relation | index | ind_endtime | PRIMARY | 8 | NULL | 733552 | |
+----+-------------+-------------+--------+---------------+---------+---------+------+--------+-------+
3 rows in set (0.36 sec)
执行时间:
优化后 执行时间 为原来的1/3 。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

MySQL query performance can be optimized by building indexes that reduce lookup time from linear complexity to logarithmic complexity. Use PreparedStatements to prevent SQL injection and improve query performance. Limit query results and reduce the amount of data processed by the server. Optimize join queries, including using appropriate join types, creating indexes, and considering using subqueries. Analyze queries to identify bottlenecks; use caching to reduce database load; optimize PHP code to minimize overhead.

In order to improve the performance of Go applications, we can take the following optimization measures: Caching: Use caching to reduce the number of accesses to the underlying storage and improve performance. Concurrency: Use goroutines and channels to execute lengthy tasks in parallel. Memory Management: Manually manage memory (using the unsafe package) to further optimize performance. To scale out an application we can implement the following techniques: Horizontal Scaling (Horizontal Scaling): Deploying application instances on multiple servers or nodes. Load balancing: Use a load balancer to distribute requests to multiple application instances. Data sharding: Distribute large data sets across multiple databases or storage nodes to improve query performance and scalability.

Creating a MySQL table using PHP requires the following steps: Connect to the database. Create the database if it does not exist. Select a database. Create table. Execute the query. Close the connection.

One of the major changes introduced in MySQL 8.4 (the latest LTS release as of 2024) is that the "MySQL Native Password" plugin is no longer enabled by default. Further, MySQL 9.0 removes this plugin completely. This change affects PHP and other app

Performance optimization for Java microservices architecture includes the following techniques: Use JVM tuning tools to identify and adjust performance bottlenecks. Optimize the garbage collector and select and configure a GC strategy that matches your application's needs. Use a caching service such as Memcached or Redis to improve response times and reduce database load. Employ asynchronous programming to improve concurrency and responsiveness. Split microservices, breaking large monolithic applications into smaller services to improve scalability and performance.

PHP provides the following methods to delete data in MySQL tables: DELETE statement: used to delete rows matching conditions from the table. TRUNCATETABLE statement: used to clear all data in the table, including auto-incremented IDs. Practical case: You can delete users from the database using HTML forms and PHP code. The form submits the user ID, and the PHP code uses the DELETE statement to delete the record matching the ID from the users table.

Setting up a MySQL connection pool using PHP can improve performance and scalability. The steps include: 1. Install the MySQLi extension; 2. Create a connection pool class; 3. Set the connection pool configuration; 4. Create a connection pool instance; 5. Obtain and release connections. With connection pooling, applications can avoid creating a new database connection for each request, thereby improving performance.

Improve PHP performance by enabling OPCache to cache compiled code. Use a caching framework such as Memcached to store frequently used data. Reduce database queries (e.g. by caching query results). Optimize code (e.g. use inline functions). Utilize performance analysis tools such as XHProf to identify performance bottlenecks.
