


General solution to unsupervised learning problems: a meta-algorithm-based framework
Researchers from Microsoft Research and Princeton University on November 13 proposed a general framework for designing efficient algorithms for unsupervised learning problems, such as a mixture of Gaussian distributions and subspace clustering.
#The framework proposed by the researchers uses a meta-algorithm to solve the noise problem, which uses the calculation method of the lower bound learning calculation formula. This framework is designed based on the recent work of Garg, Kayal, and Saha (FOCS'20), who proposed this framework for learning arithmetic formulas without any noise. A key element of the meta-algorithm is an efficient algorithm for solving a new problem called "robust vector space decomposition"
Research has shown that when some matrix has a sufficiently large minimum non-zero Meta-algorithms work well when dealing with singular values. "We conjecture that this condition holds for smoothed instances of our problem, and therefore our framework will yield efficient algorithms for these problems in smooth settings."
The study is titled "In Learning Arithmetic Formulas in the Presence of Noise: A General Framework and Applications to Unsupervised Learning, published on the arXiv preprint platform on November 13
Unsupervised learning involves discovering hidden patterns and structures in data without using any labels or direct human supervision.
Here, researchers consider data that has a good mathematical structure or is generated from a mathematically well-defined distribution. An example of the former is that data points can be grouped into meaningful clusters based on certain similarity patterns, and the goal is to find the underlying clusters. An example of the latter is mixture modeling, which assumes that data are generated by a mixture of succinctly described probability distributions (e.g. Gaussian distributions), and the goal is to learn the parameters of these distributions from samples.
A common framework for solving many unsupervised learning problems is the moment method, which exploits the statistical moments of the data to infer the underlying structure or underlying parameters of the model. For many unsupervised learning problem scenarios, where the underlying data has some nice mathematical structure, the moments of the data are well-defined functions of the parameters. Heuristic arguments suggest that the opposite should generally hold, i.e. the parameters of a structure/distribution are usually uniquely determined by some low-order moments of the data. In this general direction, the main challenge is to design algorithms to (approximately) recover the underlying parameters from (empirical) moments.
We also want the algorithm to be efficient, tolerant to noise (i.e., work well even if the moments are only known approximately, rather than exactly), and even tolerant of anomalies (i.e., Works well even if a few data points don't fit the underlying structure/distribution). But even the simplest problems in the field tend to be NP-hard, and remain so even in the absence of noise and outliers.
So one cannot actually expect an algorithm with provable worst-case guarantees. But one can hope that the algorithm is guaranteed to work generally well, i.e. for random problem instances, or more ideally for instances chosen in a smooth way. Therefore, many different algorithms have been designed for each such problem in unsupervised learning, with varying levels of efficiency, noise tolerance, outlier tolerance, and provable guarantees.
In this work, the researchers present a meta-algorithm applicable to many such unsupervised learning problems. The starting point of this study is the observation that many such problems boil down to the task of learning appropriate subclasses of arithmetic formulas.
The above is the detailed content of General solution to unsupervised learning problems: a meta-algorithm-based framework. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



This site reported on June 27 that Jianying is a video editing software developed by FaceMeng Technology, a subsidiary of ByteDance. It relies on the Douyin platform and basically produces short video content for users of the platform. It is compatible with iOS, Android, and Windows. , MacOS and other operating systems. Jianying officially announced the upgrade of its membership system and launched a new SVIP, which includes a variety of AI black technologies, such as intelligent translation, intelligent highlighting, intelligent packaging, digital human synthesis, etc. In terms of price, the monthly fee for clipping SVIP is 79 yuan, the annual fee is 599 yuan (note on this site: equivalent to 49.9 yuan per month), the continuous monthly subscription is 59 yuan per month, and the continuous annual subscription is 499 yuan per year (equivalent to 41.6 yuan per month) . In addition, the cut official also stated that in order to improve the user experience, those who have subscribed to the original VIP

Improve developer productivity, efficiency, and accuracy by incorporating retrieval-enhanced generation and semantic memory into AI coding assistants. Translated from EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, author JanakiramMSV. While basic AI programming assistants are naturally helpful, they often fail to provide the most relevant and correct code suggestions because they rely on a general understanding of the software language and the most common patterns of writing software. The code generated by these coding assistants is suitable for solving the problems they are responsible for solving, but often does not conform to the coding standards, conventions and styles of the individual teams. This often results in suggestions that need to be modified or refined in order for the code to be accepted into the application

Large Language Models (LLMs) are trained on huge text databases, where they acquire large amounts of real-world knowledge. This knowledge is embedded into their parameters and can then be used when needed. The knowledge of these models is "reified" at the end of training. At the end of pre-training, the model actually stops learning. Align or fine-tune the model to learn how to leverage this knowledge and respond more naturally to user questions. But sometimes model knowledge is not enough, and although the model can access external content through RAG, it is considered beneficial to adapt the model to new domains through fine-tuning. This fine-tuning is performed using input from human annotators or other LLM creations, where the model encounters additional real-world knowledge and integrates it

To learn more about AIGC, please visit: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou is different from the traditional question bank that can be seen everywhere on the Internet. These questions It requires thinking outside the box. Large Language Models (LLMs) are increasingly important in the fields of data science, generative artificial intelligence (GenAI), and artificial intelligence. These complex algorithms enhance human skills and drive efficiency and innovation in many industries, becoming the key for companies to remain competitive. LLM has a wide range of applications. It can be used in fields such as natural language processing, text generation, speech recognition and recommendation systems. By learning from large amounts of data, LLM is able to generate text

Machine learning is an important branch of artificial intelligence that gives computers the ability to learn from data and improve their capabilities without being explicitly programmed. Machine learning has a wide range of applications in various fields, from image recognition and natural language processing to recommendation systems and fraud detection, and it is changing the way we live. There are many different methods and theories in the field of machine learning, among which the five most influential methods are called the "Five Schools of Machine Learning". The five major schools are the symbolic school, the connectionist school, the evolutionary school, the Bayesian school and the analogy school. 1. Symbolism, also known as symbolism, emphasizes the use of symbols for logical reasoning and expression of knowledge. This school of thought believes that learning is a process of reverse deduction, through existing

Editor |ScienceAI Question Answering (QA) data set plays a vital role in promoting natural language processing (NLP) research. High-quality QA data sets can not only be used to fine-tune models, but also effectively evaluate the capabilities of large language models (LLM), especially the ability to understand and reason about scientific knowledge. Although there are currently many scientific QA data sets covering medicine, chemistry, biology and other fields, these data sets still have some shortcomings. First, the data form is relatively simple, most of which are multiple-choice questions. They are easy to evaluate, but limit the model's answer selection range and cannot fully test the model's ability to answer scientific questions. In contrast, open-ended Q&A

01 Outlook Summary Currently, it is difficult to achieve an appropriate balance between detection efficiency and detection results. We have developed an enhanced YOLOv5 algorithm for target detection in high-resolution optical remote sensing images, using multi-layer feature pyramids, multi-detection head strategies and hybrid attention modules to improve the effect of the target detection network in optical remote sensing images. According to the SIMD data set, the mAP of the new algorithm is 2.2% better than YOLOv5 and 8.48% better than YOLOX, achieving a better balance between detection results and speed. 02 Background & Motivation With the rapid development of remote sensing technology, high-resolution optical remote sensing images have been used to describe many objects on the earth’s surface, including aircraft, cars, buildings, etc. Object detection in the interpretation of remote sensing images

Editor | KX In the field of drug research and development, accurately and effectively predicting the binding affinity of proteins and ligands is crucial for drug screening and optimization. However, current studies do not take into account the important role of molecular surface information in protein-ligand interactions. Based on this, researchers from Xiamen University proposed a novel multi-modal feature extraction (MFE) framework, which for the first time combines information on protein surface, 3D structure and sequence, and uses a cross-attention mechanism to compare different modalities. feature alignment. Experimental results demonstrate that this method achieves state-of-the-art performance in predicting protein-ligand binding affinities. Furthermore, ablation studies demonstrate the effectiveness and necessity of protein surface information and multimodal feature alignment within this framework. Related research begins with "S
