Home Technology peripherals AI A must-read for AI product managers! A beginner's guide to getting started with machine learning algorithms

A must-read for AI product managers! A beginner's guide to getting started with machine learning algorithms

Nov 28, 2023 pm 05:25 PM
machine learning algorithm ai product manager

The content about interesting machine learning algorithms is the topic of the next article. This article is shared for students who are AI product managers and is highly recommended to students who have just entered this field!

A must-read for AI product managers! A beginners guide to getting started with machine learning algorithms

We have talked before about the artificial intelligence industry, the second curve of product managers, and the differences between the two positions. This time we will go one step deeper - interesting explanations of machine learning algorithms.

Machine learning algorithms may sound a bit unfathomable. I understand that many people, including me, will have a headache at the beginning. I try not to use formulas and only present them in the form of cases. We will gradually deepen from the whole to the part.

1. Overview of machine learning algorithms

First, let’s understand the basic concepts of machine learning algorithms.

Machine learning is a method for computers to learn and improve through data, and machine learning algorithms are the tools to achieve this goal

Simply put, a machine learning algorithm is a set of rules or models that can learn based on input data and then make predictions or decisions based on the learned knowledge.

Fun Moment: Imagine you are participating in a mysterious treasure hunt. In the game, you need to find the location of the treasure based on a treasure map. This treasure map is the data, and all you have to do is find the treasure by analyzing the data. In real life, we can achieve this task through machine learning algorithms.

The machine learning algorithm is like an intelligent treasure-hunting robot that can learn patterns from a large amount of data and then make predictions or decisions based on these patterns. The core goal of machine learning algorithms is to reduce the mapping error from data to results, thereby making our products more intelligent and accurate.

The application scenarios of machine learning algorithms are very wide. Common applications include classification problems, cluster analysis and regression problems. These three application scenarios have their own applications in real life. Next, their application scenarios and practical applications will be introduced respectively

A must-read for AI product managers! A beginners guide to getting started with machine learning algorithms

2. Scenario 1: Classification Problem

1) Application scenarios: Classification judgment, label prediction, behavior prediction.

2) Solution principle: Train the known data and predict the unknown data (including two classifications and multi-classifications. For example, the prediction result has only two discrete values, such as "0/1, yes /No" is a two-class classification. If the prediction result is multiple discrete values, such as "A/B/C", it is a multi-classification).

Common classification algorithms include the following:

  1. Decision tree: Decision tree is a classification algorithm based on a tree structure, which classifies data through a series of questions.
  2. Support vector machine: Support vector machine is a classification algorithm based on geometric concepts that performs classification by finding the maximum margin hyperplane in the data space.

4) Case: Preventing Spam

Spam filtering is a typical classification problem. We can use support vector machine algorithm to solve this problem. By training the model, we can accurately determine whether the email is spam or normal based on the keywords, sender and other information in the email

3. Scenario 2: Cluster analysis

1) Application scenarios: User grouping, user portrait

2) Solution principle: Cluster analysis is the process of dividing a set of data into several categories. These categories are based on intrinsic properties or similarities of the data. To sum up its characteristics in one word, "birds of a feather flock together".

3) Common clustering algorithms

  1. K-means clustering: K-means clustering is a distance-based clustering algorithm. It divides data points into K categories by iteratively calculating the distance between them.
  2. Hierarchical clustering: Hierarchical clustering is a distance-based clustering algorithm. It gradually divides similar data points into one category by calculating the distance between data points.

4) Case: Customer Segmentation

For customer segmentation, it is a common cluster analysis application. We can use the K-means clustering algorithm to group customers into different categories based on their consumption amount, purchase frequency and other attributes in order to formulate precise marketing strategies

4. Scenario 3: Regression problem

1) Application scenario: Predict future prices and sales.

2) Solution principle: Fit a graph (straight line/curve) according to the distribution of the sample, form a system of equations, input parameters, and predict specific values ​​in the future.

3) Common regression algorithms

  1. Linear regression: Linear regression is a regression algorithm based on linear relationships. It predicts future data by fitting a linear relationship between data points.
  2. Decision tree regression: Decision tree regression is a regression algorithm based on a tree structure. It predicts the target value through a series of questions.
  3. Support vector machine regression: Support vector machine regression is a regression algorithm based on geometric concepts. It predicts the target value by finding the maximum margin hyperplane in the data space.

4) Case stock price prediction

Stock price prediction is a typical regression problem. We can use linear regression or support vector machine regression algorithms to predict future stock prices based on historical stock price data.

5. Final words

To summarize, the main purpose of this article is to introduce mainstream machine learning algorithms. Next, I will analyze the algorithms of the three application scenarios one by one. If you want to know what algorithm knowledge, please share it in the comment area, welcome to create and share together

I hope it can bring you some inspiration, come on!

Please do not reprint this article. This article was originally published by @六星笑 Product on Everyone is a Product Manager without permission

The title picture comes from Unsplash, based on the CC0 protocol

The above is the detailed content of A must-read for AI product managers! A beginner's guide to getting started with machine learning algorithms. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

This article will take you to understand SHAP: model explanation for machine learning This article will take you to understand SHAP: model explanation for machine learning Jun 01, 2024 am 10:58 AM

In the fields of machine learning and data science, model interpretability has always been a focus of researchers and practitioners. With the widespread application of complex models such as deep learning and ensemble methods, understanding the model's decision-making process has become particularly important. Explainable AI|XAI helps build trust and confidence in machine learning models by increasing the transparency of the model. Improving model transparency can be achieved through methods such as the widespread use of multiple complex models, as well as the decision-making processes used to explain the models. These methods include feature importance analysis, model prediction interval estimation, local interpretability algorithms, etc. Feature importance analysis can explain the decision-making process of a model by evaluating the degree of influence of the model on the input features. Model prediction interval estimate

Implementing Machine Learning Algorithms in C++: Common Challenges and Solutions Implementing Machine Learning Algorithms in C++: Common Challenges and Solutions Jun 03, 2024 pm 01:25 PM

Common challenges faced by machine learning algorithms in C++ include memory management, multi-threading, performance optimization, and maintainability. Solutions include using smart pointers, modern threading libraries, SIMD instructions and third-party libraries, as well as following coding style guidelines and using automation tools. Practical cases show how to use the Eigen library to implement linear regression algorithms, effectively manage memory and use high-performance matrix operations.

Five schools of machine learning you don't know about Five schools of machine learning you don't know about Jun 05, 2024 pm 08:51 PM

Machine learning is an important branch of artificial intelligence that gives computers the ability to learn from data and improve their capabilities without being explicitly programmed. Machine learning has a wide range of applications in various fields, from image recognition and natural language processing to recommendation systems and fraud detection, and it is changing the way we live. There are many different methods and theories in the field of machine learning, among which the five most influential methods are called the "Five Schools of Machine Learning". The five major schools are the symbolic school, the connectionist school, the evolutionary school, the Bayesian school and the analogy school. 1. Symbolism, also known as symbolism, emphasizes the use of symbols for logical reasoning and expression of knowledge. This school of thought believes that learning is a process of reverse deduction, through existing

Explainable AI: Explaining complex AI/ML models Explainable AI: Explaining complex AI/ML models Jun 03, 2024 pm 10:08 PM

Translator | Reviewed by Li Rui | Chonglou Artificial intelligence (AI) and machine learning (ML) models are becoming increasingly complex today, and the output produced by these models is a black box – unable to be explained to stakeholders. Explainable AI (XAI) aims to solve this problem by enabling stakeholders to understand how these models work, ensuring they understand how these models actually make decisions, and ensuring transparency in AI systems, Trust and accountability to address this issue. This article explores various explainable artificial intelligence (XAI) techniques to illustrate their underlying principles. Several reasons why explainable AI is crucial Trust and transparency: For AI systems to be widely accepted and trusted, users need to understand how decisions are made

Is Flash Attention stable? Meta and Harvard found that their model weight deviations fluctuated by orders of magnitude Is Flash Attention stable? Meta and Harvard found that their model weight deviations fluctuated by orders of magnitude May 30, 2024 pm 01:24 PM

MetaFAIR teamed up with Harvard to provide a new research framework for optimizing the data bias generated when large-scale machine learning is performed. It is known that the training of large language models often takes months and uses hundreds or even thousands of GPUs. Taking the LLaMA270B model as an example, its training requires a total of 1,720,320 GPU hours. Training large models presents unique systemic challenges due to the scale and complexity of these workloads. Recently, many institutions have reported instability in the training process when training SOTA generative AI models. They usually appear in the form of loss spikes. For example, Google's PaLM model experienced up to 20 loss spikes during the training process. Numerical bias is the root cause of this training inaccuracy,

Improved detection algorithm: for target detection in high-resolution optical remote sensing images Improved detection algorithm: for target detection in high-resolution optical remote sensing images Jun 06, 2024 pm 12:33 PM

01 Outlook Summary Currently, it is difficult to achieve an appropriate balance between detection efficiency and detection results. We have developed an enhanced YOLOv5 algorithm for target detection in high-resolution optical remote sensing images, using multi-layer feature pyramids, multi-detection head strategies and hybrid attention modules to improve the effect of the target detection network in optical remote sensing images. According to the SIMD data set, the mAP of the new algorithm is 2.2% better than YOLOv5 and 8.48% better than YOLOX, achieving a better balance between detection results and speed. 02 Background & Motivation With the rapid development of remote sensing technology, high-resolution optical remote sensing images have been used to describe many objects on the earth’s surface, including aircraft, cars, buildings, etc. Object detection in the interpretation of remote sensing images

Machine Learning in C++: A Guide to Implementing Common Machine Learning Algorithms in C++ Machine Learning in C++: A Guide to Implementing Common Machine Learning Algorithms in C++ Jun 03, 2024 pm 07:33 PM

In C++, the implementation of machine learning algorithms includes: Linear regression: used to predict continuous variables. The steps include loading data, calculating weights and biases, updating parameters and prediction. Logistic regression: used to predict discrete variables. The process is similar to linear regression, but uses the sigmoid function for prediction. Support Vector Machine: A powerful classification and regression algorithm that involves computing support vectors and predicting labels.

Application of algorithms in the construction of 58 portrait platform Application of algorithms in the construction of 58 portrait platform May 09, 2024 am 09:01 AM

1. Background of the Construction of 58 Portraits Platform First of all, I would like to share with you the background of the construction of the 58 Portrait Platform. 1. The traditional thinking of the traditional profiling platform is no longer enough. Building a user profiling platform relies on data warehouse modeling capabilities to integrate data from multiple business lines to build accurate user portraits; it also requires data mining to understand user behavior, interests and needs, and provide algorithms. side capabilities; finally, it also needs to have data platform capabilities to efficiently store, query and share user profile data and provide profile services. The main difference between a self-built business profiling platform and a middle-office profiling platform is that the self-built profiling platform serves a single business line and can be customized on demand; the mid-office platform serves multiple business lines, has complex modeling, and provides more general capabilities. 2.58 User portraits of the background of Zhongtai portrait construction

See all articles