Home Backend Development PHP Tutorial Asynchronous coroutine development practice: optimizing the speed and efficiency of big data processing

Asynchronous coroutine development practice: optimizing the speed and efficiency of big data processing

Dec 02, 2023 am 08:39 AM
Big Data coroutine asynchronous

Asynchronous coroutine development practice: optimizing the speed and efficiency of big data processing

Asynchronous Coroutine Development Practice: Optimizing the Speed ​​and Efficiency of Big Data Processing

Introduction:
In today's digital era, big data processing has become an important issue in all walks of life. important needs of the industry. However, with the increase in data volume and complexity, traditional methods can no longer meet the speed and efficiency requirements for processing big data. In order to solve this problem, asynchronous coroutine development has gradually emerged in recent years. This article will introduce what asynchronous coroutine development is and how to use asynchronous coroutine development to optimize the speed and efficiency of big data processing, and provide specific code examples.

1. What is asynchronous coroutine development
Asynchronous coroutine development is a concurrent programming method that allows the program to release CPU resources to perform other tasks while waiting for an operation to be completed. Thereby improving the concurrency capability and response performance of the program. Compared with traditional thread or process methods, asynchronous coroutine development is more lightweight, efficient and easy to use.

2. Why use asynchronous coroutines to develop and optimize big data processing
In the process of big data processing, a large number of IO operations are often required, such as reading files, requesting the network, accessing the database, etc. In traditional programming methods, these IO operations are often blocking, which means that the program must wait for the IO operation to complete before continuing to the next step. During this waiting process, CPU resources are idle, resulting in low processing efficiency.

Asynchronous coroutine development solves this problem by converting IO operations into non-blocking methods. When the program encounters an IO operation, it will initiate an asynchronous request and continue to perform subsequent operations instead of waiting for the IO operation to complete. When the IO operation is completed, the program will process the results according to the pre-defined callback function. This method greatly improves the concurrency and response speed of the program.

3. Asynchronous Coroutine Development Practice: Optimizing the Speed ​​and Efficiency of Big Data Processing
The following is a sample code that uses asynchronous coroutine development to process big data:

import asyncio

async def process_data(data):
    # 模拟耗时的数据处理操作
    await asyncio.sleep(1)
    # 处理数据
    processed_data = data.upper()
    return processed_data

async def process_big_data(big_data):
    processed_data_list = []
    tasks = []
    for data in big_data:
        # 创建协程任务
        task = asyncio.create_task(process_data(data))
        tasks.append(task)
    
    # 并发执行协程任务
    processed_data_list = await asyncio.gather(*tasks)
    return processed_data_list

async def main():
    # 构造大数据
    big_data = ['data1', 'data2', 'data3', ...]

    # 处理大数据
    processed_data_list = await process_big_data(big_data)

    # 输出处理结果
    print(processed_data_list)

if __name__ == '__main__':
    asyncio.run(main())
Copy after login

Above In the code, the process_data function simulates a time-consuming data processing operation and returns the processing result using the await keyword. The process_big_data function creates multiple coroutine tasks and uses the asyncio.gather function to execute these tasks concurrently. Finally, the main function is responsible for constructing big data, calling the process_big_data function to process the data, and output the processing results.

By using asynchronous coroutine development, the above code can execute the processing of big data concurrently, making full use of CPU resources and improving the speed and efficiency of data processing. Moreover, because asynchronous coroutine development is based on event loops, it is more lightweight than multi-threading or multi-process, avoiding the overhead of thread switching and context switching.

Conclusion:
Asynchronous coroutine development is an important means to optimize big data processing. By using asynchronous coroutine development, big data processing tasks can be executed concurrently, making full use of CPU resources and improving the speed and efficiency of data processing. This article introduces the concepts and principles of asynchronous coroutine development and provides a specific code example, hoping to help readers better understand asynchronous coroutine development and apply it to actual big data processing.

The above is the detailed content of Asynchronous coroutine development practice: optimizing the speed and efficiency of big data processing. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

PHP's big data structure processing skills PHP's big data structure processing skills May 08, 2024 am 10:24 AM

Big data structure processing skills: Chunking: Break down the data set and process it in chunks to reduce memory consumption. Generator: Generate data items one by one without loading the entire data set, suitable for unlimited data sets. Streaming: Read files or query results line by line, suitable for large files or remote data. External storage: For very large data sets, store the data in a database or NoSQL.

The parent-child relationship between golang functions and goroutine The parent-child relationship between golang functions and goroutine Apr 25, 2024 pm 12:57 PM

There is a parent-child relationship between functions and goroutines in Go. The parent goroutine creates the child goroutine, and the child goroutine can access the variables of the parent goroutine but not vice versa. Create a child goroutine using the go keyword, and the child goroutine is executed through an anonymous function or a named function. A parent goroutine can wait for child goroutines to complete via sync.WaitGroup to ensure that the program does not exit before all child goroutines have completed.

Five major development trends in the AEC/O industry in 2024 Five major development trends in the AEC/O industry in 2024 Apr 19, 2024 pm 02:50 PM

AEC/O (Architecture, Engineering & Construction/Operation) refers to the comprehensive services that provide architectural design, engineering design, construction and operation in the construction industry. In 2024, the AEC/O industry faces changing challenges amid technological advancements. This year is expected to see the integration of advanced technologies, heralding a paradigm shift in design, construction and operations. In response to these changes, industries are redefining work processes, adjusting priorities, and enhancing collaboration to adapt to the needs of a rapidly changing world. The following five major trends in the AEC/O industry will become key themes in 2024, recommending it move towards a more integrated, responsive and sustainable future: integrated supply chain, smart manufacturing

Application of concurrency and coroutines in Golang API design Application of concurrency and coroutines in Golang API design May 07, 2024 pm 06:51 PM

Concurrency and coroutines are used in GoAPI design for: High-performance processing: Processing multiple requests simultaneously to improve performance. Asynchronous processing: Use coroutines to process tasks (such as sending emails) asynchronously, releasing the main thread. Stream processing: Use coroutines to efficiently process data streams (such as database reads).

The relationship between Golang coroutine and goroutine The relationship between Golang coroutine and goroutine Apr 15, 2024 am 10:42 AM

Coroutine is an abstract concept for executing tasks concurrently, and goroutine is a lightweight thread function in the Go language that implements the concept of coroutine. The two are closely related, but goroutine resource consumption is lower and managed by the Go scheduler. Goroutine is widely used in actual combat, such as concurrently processing web requests and improving program performance.

Application of algorithms in the construction of 58 portrait platform Application of algorithms in the construction of 58 portrait platform May 09, 2024 am 09:01 AM

1. Background of the Construction of 58 Portraits Platform First of all, I would like to share with you the background of the construction of the 58 Portrait Platform. 1. The traditional thinking of the traditional profiling platform is no longer enough. Building a user profiling platform relies on data warehouse modeling capabilities to integrate data from multiple business lines to build accurate user portraits; it also requires data mining to understand user behavior, interests and needs, and provide algorithms. side capabilities; finally, it also needs to have data platform capabilities to efficiently store, query and share user profile data and provide profile services. The main difference between a self-built business profiling platform and a middle-office profiling platform is that the self-built profiling platform serves a single business line and can be customized on demand; the mid-office platform serves multiple business lines, has complex modeling, and provides more general capabilities. 2.58 User portraits of the background of Zhongtai portrait construction

How to control the life cycle of Golang coroutines? How to control the life cycle of Golang coroutines? May 31, 2024 pm 06:05 PM

Controlling the life cycle of a Go coroutine can be done in the following ways: Create a coroutine: Use the go keyword to start a new task. Terminate coroutines: wait for all coroutines to complete, use sync.WaitGroup. Use channel closing signals. Use context context.Context.

Asynchronous and non-blocking technology in Java exception handling Asynchronous and non-blocking technology in Java exception handling May 01, 2024 pm 05:42 PM

Asynchronous and non-blocking techniques can be used to complement traditional exception handling, allowing the creation of more responsive and efficient Java applications: Asynchronous exception handling: Handling exceptions in another thread or process, allowing the main thread to continue executing, avoiding blocking. Non-blocking exception handling: involves event-driven exception handling when an I/O operation goes wrong, avoiding blocking threads and allowing the event loop to handle exceptions.

See all articles