在大数据情况下MySQL的一种简单分页优化方法_MySQL
通常应用需要对表中的数据进行翻页,如果数据量很大,往往会带来性能上的问题:
root@sns 07:16:25>select count(*) from reply_0004 where thread_id = 5616385 and deleted = 0; +———-+ | count(*) | +———-+ | 1236795 | +———-+ 1 row in set (0.44 sec) root@sns 07:16:30>select id from reply_0004 where thread_id = 5616385 and deleted = 0 order by id asc limit 1236785, 10 ; +———–+ | id | +———–+ | 162436798 | | 162438180 | | 162440102 | | 162442044 | | 162479222 | | 162479598 | | 162514705 | | 162832588 | | 162863394 | | 162899685 | +———–+ 10 rows in set (1.32 sec)
索引:threa_id+deleted+id(gmt_Create)
10 rows in set (1.32 sec)
这两条sql是为查询最后一页的翻页sql查询用的。由于一次翻页往往只需要查询较小的数据,如10条,但需要向后扫描大量的数据,也就是越往后的翻页查询,扫描的数据量会越多,查询的速度也就越来越慢。
由于查询的数据量大小是固定的,如果查询速度不受翻页的页数影响,或者影响最低,那么这样是最佳的效果了(查询最后最几页的速度和开始几页的速度一致)。
在翻页的时候,往往需要对其中的某个字段做排序(这个字段在索引中),升序排序。那么可不可以利用索引的有序性来解决上面遇到的问题喃,答案是肯定的。比如有10000条数据需要做分页,那么前5000条做asc排序,后5000条desc排序,在limit startnum,pagesize参数中作出相应的调整。
但是这无疑给应用程序带来复杂,这条sql是用于论坛回复帖子的sql,往往用户在看帖子的时候,一般都是查看前几页和最后几页,那么在翻页的时候最后几页的翻页查询采用desc的方式来实现翻页,这样就可以较好的提高性能:
root@snsgroup 07:16:49>select * from (select id -> from group_thread_reply_0004 where thread_id = 5616385 and deleted = 0 -> order by id desc limit 0, 10)t order by t.id asc; +———–+ | id | +———–+ | 162436798 | | 162438180 | | 162440102 | | 162442044 | | 162479222 | | 162479598 | | 162514705 | | 162832588 | | 162863394 | | 162899685 | +———–+ 10 rows in set (0.87 sec)
可以看到性能提升了50%以上。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Big data structure processing skills: Chunking: Break down the data set and process it in chunks to reduce memory consumption. Generator: Generate data items one by one without loading the entire data set, suitable for unlimited data sets. Streaming: Read files or query results line by line, suitable for large files or remote data. External storage: For very large data sets, store the data in a database or NoSQL.

Backing up and restoring a MySQL database in PHP can be achieved by following these steps: Back up the database: Use the mysqldump command to dump the database into a SQL file. Restore database: Use the mysql command to restore the database from SQL files.

MySQL query performance can be optimized by building indexes that reduce lookup time from linear complexity to logarithmic complexity. Use PreparedStatements to prevent SQL injection and improve query performance. Limit query results and reduce the amount of data processed by the server. Optimize join queries, including using appropriate join types, creating indexes, and considering using subqueries. Analyze queries to identify bottlenecks; use caching to reduce database load; optimize PHP code to minimize overhead.

How to insert data into MySQL table? Connect to the database: Use mysqli to establish a connection to the database. Prepare the SQL query: Write an INSERT statement to specify the columns and values to be inserted. Execute query: Use the query() method to execute the insertion query. If successful, a confirmation message will be output.

To use MySQL stored procedures in PHP: Use PDO or the MySQLi extension to connect to a MySQL database. Prepare the statement to call the stored procedure. Execute the stored procedure. Process the result set (if the stored procedure returns results). Close the database connection.

Creating a MySQL table using PHP requires the following steps: Connect to the database. Create the database if it does not exist. Select a database. Create table. Execute the query. Close the connection.

One of the major changes introduced in MySQL 8.4 (the latest LTS release as of 2024) is that the "MySQL Native Password" plugin is no longer enabled by default. Further, MySQL 9.0 removes this plugin completely. This change affects PHP and other app

Oracle database and MySQL are both databases based on the relational model, but Oracle is superior in terms of compatibility, scalability, data types and security; while MySQL focuses on speed and flexibility and is more suitable for small to medium-sized data sets. . ① Oracle provides a wide range of data types, ② provides advanced security features, ③ is suitable for enterprise-level applications; ① MySQL supports NoSQL data types, ② has fewer security measures, and ③ is suitable for small to medium-sized applications.
