Home Database Mysql Tutorial 简单分析MySQL中的primary key功能_MySQL

简单分析MySQL中的primary key功能_MySQL

Jun 01, 2016 pm 01:00 PM
mysql

在5.1.46中优化器在对primary key的选择上做了一点改动:

Performance: While looking for the shortest index for a covering index scan, the optimizer did not consider the full row length for a clustered primary key, as in InnoDB. Secondary covering indexes will now be preferred, making full table scans less likely。

该版本中增加了find_shortest_key函数,该函数的作用可以认为是选择最小key length的

索引来满足我们的查询。

该函数是怎么工作的:

代码如下:

What find_shortest_key should do is the following. If the primary key is a covering index

and is clustered, like in MyISAM, then the behavior today should remain the same. If the

primary key is clustered, like in InnoDB, then it should not consider using the primary

key because then the storage engine will have to scan through much more data.

调用Primary_key_is_clustered(),当返回值为true,执行find_shortest_key:选择key length最小的覆盖索引(Secondary covering indexes),然后来满足查询。

首先在5.1.45中测试:

$mysql -V

mysql Ver 14.14 Distrib 5.1.45, for unknown-linux-gnu (x86_64) using EditLine wrapper

root@test 03:49:45>create table test(id int,name varchar(20),name2 varchar(20),d datetime,primary key(id)) engine=innodb;

Query OK, 0 rows affected (0.16 sec)

root@test 03:49:47>insert into test values(1,'xc','sds',now()),(2,'xcx','dd',now()),(3,'sdds','ddd',now()),(4,'sdsdf','dsd',now()),(5,'sdsdaa','sds',now());

Query OK, 5 rows affected (0.00 sec)

Records: 5 Duplicates: 0 Warnings: 0

root@test 03:49:51>

root@test 03:49:51>insert into test values(6,'xce','sdsd',now()),(7,'xcx','sdsd',now()),(8,'sdds','sds',now()),(9,'sdsdsdf','sdsdsd',now()),(10,'sdssdfdaa','sdsdsd',now());

Query OK, 5 rows affected (0.00 sec)

Records: 5 Duplicates: 0 Warnings: 0

Copy after login

创建索引ind_1:

root@test 03:49:53>alter table test add index ind_1(name,d);

Query OK, 0 rows affected (0.09 sec)

Records: 0 Duplicates: 0 Warnings: 0

root@test 03:50:08>explain select count(*) from test;

+—-+————-+——-+——-+—————+———+———+——+——+————-+

| id | select_type | table | type | possible_keys | key   | key_len | ref | rows | Extra    |

+—-+————-+——-+——-+—————+———+———+——+——+————-+

| 1 | SIMPLE   | test | index | NULL     | PRIMARY | 4    | NULL |  10 | Using index |

+—-+————-+——-+——-+—————+———+———+——+——+————-+

1 row in set (0.00 sec)

Copy after login

添加ind_2:

root@test 08:04:35>alter table test add index ind_2(d);

Query OK, 0 rows affected (0.07 sec)

Records: 0 Duplicates: 0 Warnings: 0

root@test 08:04:45>explain select count(*) from test;

+—-+————-+——-+——-+—————+———+———+——+——+————-+

| id | select_type | table | type | possible_keys | key   | key_len | ref | rows | Extra    |

+—-+————-+——-+——-+—————+———+———+——+——+————-+

| 1 | SIMPLE   | test | index | NULL     | PRIMARY | 4    | NULL |  10 | Using index |

+—-+————-+——-+——-+—————+———+———+——+——+————-+

1 row in set (0.00 sec)

Copy after login

上面的版本【5.1.45】中,可以看到优化器选择使用主键来完成扫描,并没有使用ind_1,ind_2来完成查询;

接下来是:5.1.48

$mysql -V

mysql Ver 14.14 Distrib 5.1.48, for unknown-linux-gnu (x86_64) using EditLine wrapper

root@test 03:13:15> create table test(id int,name varchar(20),name2 varchar(20),d datetime,primary key(id)) engine=innodb;

Query OK, 0 rows affected (0.00 sec)

root@test 03:48:04>insert into test values(1,'xc','sds',now()),(2,'xcx','dd',now()),(3,'sdds','ddd',now()),(4,'sdsdf','dsd',now()),(5,'sdsdaa','sds',now());

Query OK, 5 rows affected (0.00 sec)

Records: 5 Duplicates: 0 Warnings: 0

root@test 03:48:05>insert into test values(6,'xce','sdsd',now()),(7,'xcx','sdsd',now()),(8,'sdds','sds',now()),(9,'sdsdsdf','sdsdsd',now()),(10,'sdssdfdaa','sdsdsd',now());

Query OK, 5 rows affected (0.01 sec)

Records: 5 Duplicates: 0 Warnings: 0

Copy after login

创建索引ind_1:

root@test 03:13:57>alter table test add index ind_1(name,d);

Query OK, 0 rows affected (0.01 sec)

Records: 0 Duplicates: 0 Warnings: 0

root@test 03:15:55>explain select count(*) from test;

+—-+————-+——-+——-+—————+——-+———+——+——+————-+

| id | select_type | table | type | possible_keys | key  | key_len | ref | rows | Extra    |

+—-+————-+——-+——-+—————+——-+———+——+——+————-+

| 1 | SIMPLE   | test | index | NULL     | ind_1 | 52   | NULL |  10 | Using index |

+—-+————-+——-+——-+—————+——-+———+——+——+————-+

root@test 08:01:56>alter table test add index ind_2(d);

Query OK, 0 rows affected (0.03 sec)

Records: 0 Duplicates: 0 Warnings: 0

添加ind_2:

root@test 08:02:09>explain select count(*) from test;

+—-+————-+——-+——-+—————+——-+———+——+——+————-+

| id | select_type | table | type | possible_keys | key  | key_len | ref | rows | Extra    |

+—-+————-+——-+——-+—————+——-+———+——+——+————-+

| 1 | SIMPLE   | test | index | NULL     | ind_2 | 9    | NULL |  10 | Using index |

+—-+————-+——-+——-+—————+——-+———+——+——+————-+

1 row in set (0.00 sec)

Copy after login

版本【5.1.48】中首先明智的选择ind_1来完成扫描,并没有考虑到使用主键(全索引扫描)来完成查询,随后添加ind_2,由于 ind_1的key长度是大于ind_2 key长度,所以mysql选择更优的ind_2来完成查询,可以看到mysql在选择方式上也在慢慢智能了。

观察性能:

5.1.48

root@test 08:49:32>set profiling =1;

Query OK, 0 rows affected (0.00 sec)

root@test 08:49:41>select count(*) from test;

+———-+

| count(*) |

+———-+

| 5242880 |

+———-+

1 row in set (1.18 sec)

root@test 08:56:30>show profile cpu,block io for query 1;

+——————————–+———-+———-+————+————–+—————+

| Status             | Duration | CPU_user | CPU_system | Block_ops_in | Block_ops_out |

+——————————–+———-+———-+————+————–+—————+

| starting            | 0.000035 | 0.000000 |  0.000000 |      0 |       0 |

| checking query cache for query | 0.000051 | 0.000000 |  0.000000 |      0 |       0 |

| Opening tables         | 0.000014 | 0.000000 |  0.000000 |      0 |       0 |

| System lock          | 0.000005 | 0.000000 |  0.000000 |      0 |       0 |

| Table lock           | 0.000010 | 0.000000 |  0.000000 |      0 |       0 |

| init              | 0.000015 | 0.000000 |  0.000000 |      0 |       0 |

| optimizing           | 0.000007 | 0.000000 |  0.000000 |      0 |       0 |

| statistics           | 0.000015 | 0.000000 |  0.000000 |      0 |       0 |

| preparing           | 0.000012 | 0.000000 |  0.000000 |      0 |       0 |

| executing           | 0.000007 | 0.000000 |  0.000000 |      0 |       0 |

| Sending data          | 1.178452 | 1.177821 |  0.000000 |      0 |       0 |

| end              | 0.000016 | 0.000000 |  0.000000 |      0 |       0 |

| query end           | 0.000005 | 0.000000 |  0.000000 |      0 |       0 |

| freeing items         | 0.000040 | 0.000000 |  0.000000 |      0 |       0 |

| logging slow query       | 0.000002 | 0.000000 |  0.000000 |      0 |       0 |

| logging slow query       | 0.000086 | 0.000000 |  0.000000 |      0 |       0 |

| cleaning up          | 0.000006 | 0.000000 |  0.000000 |      0 |       0 |

+——————————–+———-+———-+————+————–+—————+

Copy after login

对比性能:

5.1.45

root@test 08:57:18>set profiling =1;

Query OK, 0 rows affected (0.00 sec)

root@test 08:57:21>select count(*) from test;

+———-+

| count(*) |

+———-+

| 5242880 |

+———-+

1 row in set (1.30 sec)

root@test 08:57:27>show profile cpu,block io for query 1;

+——————————–+———-+———-+————+————–+—————+

| Status             | Duration | CPU_user | CPU_system | Block_ops_in | Block_ops_out |

+——————————–+———-+———-+————+————–+—————+

| starting            | 0.000026 | 0.000000 |  0.000000 |      0 |       0 |

| checking query cache for query | 0.000041 | 0.000000 |  0.000000 |      0 |       0 |

| Opening tables         | 0.000014 | 0.000000 |  0.000000 |      0 |       0 |

| System lock          | 0.000005 | 0.000000 |  0.000000 |      0 |       0 |

| Table lock           | 0.000008 | 0.000000 |  0.000000 |      0 |       0 |

| init              | 0.000015 | 0.000000 |  0.000000 |      0 |       0 |

| optimizing           | 0.000006 | 0.000000 |  0.000000 |      0 |       0 |

| statistics           | 0.000014 | 0.000000 |  0.000000 |      0 |       0 |

| preparing           | 0.000012 | 0.000000 |  0.000000 |      0 |       0 |

| executing           | 0.000007 | 0.000000 |  0.000000 |      0 |       0 |

| Sending data          | 1.294178 | 1.293803 |  0.000000 |      0 |       0 |

| end              | 0.000016 | 0.000000 |  0.000000 |      0 |       0 |

| query end           | 0.000004 | 0.000000 |  0.000000 |      0 |       0 |

| freeing items         | 0.000040 | 0.000000 |  0.001000 |      0 |       0 |

| logging slow query       | 0.000002 | 0.000000 |  0.000000 |      0 |       0 |

| logging slow query       | 0.000080 | 0.000000 |  0.000000 |      0 |       0 |

| cleaning up          | 0.000006 | 0.000000 |  0.000000 |      0 |       0 |

+——————————–+———-+———-+————+————–+—————+

Copy after login

从上面的profile中可以看到在Sending data上,差异还是比较明显的,mysql不需要扫描整个表的页块,而是扫描表中索引key最短的索引页块来完成查询,这样就减少了很多不必要的数据。

PS:innodb是事务引擎,所以在叶子节点中除了存储本行记录外,还会多记录一些关于事务的信息(DB_TRX_ID ,DB_ROLL_PTR 等),因此单行长度额外开销20个字节左右,最直观的方法是将myisam转为innodb,存储空间会明显上升。那么在主表为t(id,name,pk(id)),二级索引ind_name(name,id),这个时候很容易混淆,即使只有两个字段,第一索引还是比第二索引要大(可以通过innodb_table_monitor观察表的的内部结构)在查询所有id的时候,优化器还是会选择第二索引ind_name。

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

MySQL: Simple Concepts for Easy Learning MySQL: Simple Concepts for Easy Learning Apr 10, 2025 am 09:29 AM

MySQL is an open source relational database management system. 1) Create database and tables: Use the CREATEDATABASE and CREATETABLE commands. 2) Basic operations: INSERT, UPDATE, DELETE and SELECT. 3) Advanced operations: JOIN, subquery and transaction processing. 4) Debugging skills: Check syntax, data type and permissions. 5) Optimization suggestions: Use indexes, avoid SELECT* and use transactions.

How to open phpmyadmin How to open phpmyadmin Apr 10, 2025 pm 10:51 PM

You can open phpMyAdmin through the following steps: 1. Log in to the website control panel; 2. Find and click the phpMyAdmin icon; 3. Enter MySQL credentials; 4. Click "Login".

MySQL: An Introduction to the World's Most Popular Database MySQL: An Introduction to the World's Most Popular Database Apr 12, 2025 am 12:18 AM

MySQL is an open source relational database management system, mainly used to store and retrieve data quickly and reliably. Its working principle includes client requests, query resolution, execution of queries and return results. Examples of usage include creating tables, inserting and querying data, and advanced features such as JOIN operations. Common errors involve SQL syntax, data types, and permissions, and optimization suggestions include the use of indexes, optimized queries, and partitioning of tables.

Why Use MySQL? Benefits and Advantages Why Use MySQL? Benefits and Advantages Apr 12, 2025 am 12:17 AM

MySQL is chosen for its performance, reliability, ease of use, and community support. 1.MySQL provides efficient data storage and retrieval functions, supporting multiple data types and advanced query operations. 2. Adopt client-server architecture and multiple storage engines to support transaction and query optimization. 3. Easy to use, supports a variety of operating systems and programming languages. 4. Have strong community support and provide rich resources and solutions.

How to use single threaded redis How to use single threaded redis Apr 10, 2025 pm 07:12 PM

Redis uses a single threaded architecture to provide high performance, simplicity, and consistency. It utilizes I/O multiplexing, event loops, non-blocking I/O, and shared memory to improve concurrency, but with limitations of concurrency limitations, single point of failure, and unsuitable for write-intensive workloads.

MySQL and SQL: Essential Skills for Developers MySQL and SQL: Essential Skills for Developers Apr 10, 2025 am 09:30 AM

MySQL and SQL are essential skills for developers. 1.MySQL is an open source relational database management system, and SQL is the standard language used to manage and operate databases. 2.MySQL supports multiple storage engines through efficient data storage and retrieval functions, and SQL completes complex data operations through simple statements. 3. Examples of usage include basic queries and advanced queries, such as filtering and sorting by condition. 4. Common errors include syntax errors and performance issues, which can be optimized by checking SQL statements and using EXPLAIN commands. 5. Performance optimization techniques include using indexes, avoiding full table scanning, optimizing JOIN operations and improving code readability.

MySQL's Place: Databases and Programming MySQL's Place: Databases and Programming Apr 13, 2025 am 12:18 AM

MySQL's position in databases and programming is very important. It is an open source relational database management system that is widely used in various application scenarios. 1) MySQL provides efficient data storage, organization and retrieval functions, supporting Web, mobile and enterprise-level systems. 2) It uses a client-server architecture, supports multiple storage engines and index optimization. 3) Basic usages include creating tables and inserting data, and advanced usages involve multi-table JOINs and complex queries. 4) Frequently asked questions such as SQL syntax errors and performance issues can be debugged through the EXPLAIN command and slow query log. 5) Performance optimization methods include rational use of indexes, optimized query and use of caches. Best practices include using transactions and PreparedStatemen

Monitor Redis Droplet with Redis Exporter Service Monitor Redis Droplet with Redis Exporter Service Apr 10, 2025 pm 01:36 PM

Effective monitoring of Redis databases is critical to maintaining optimal performance, identifying potential bottlenecks, and ensuring overall system reliability. Redis Exporter Service is a powerful utility designed to monitor Redis databases using Prometheus. This tutorial will guide you through the complete setup and configuration of Redis Exporter Service, ensuring you seamlessly build monitoring solutions. By studying this tutorial, you will achieve fully operational monitoring settings

See all articles