What is the usage of np.append function?
The usage of the np.append function is to pass the element to be appended to the function as a parameter, and then specify the array and axis position to be appended. The syntax of the np.append function is "np.append(arr, values, axis=None)", arr is the array of elements to be appended, values is the element to be appended, axis is the position of the axis to be appended, and the default is None. Commonly used in one-dimensional, two-dimensional and multi-dimensional arrays, by specifying the position of the axis to control the appending method, etc.
# Operating system for this tutorial: Windows 10 system, Dell G3 computer.
The np.append function is a function in the NumPy library that is used to append elements to the end of an array. Its usage is to pass the element to be appended to the function as a parameter, and then specify the array and axis position to be appended.
Specifically, the syntax of the np.append function is as follows:
np.append(arr, values, axis=None)
Among them, arr is the array of elements to be appended, values is the element to be appended, and axis is the position of the axis to be appended. , defaults to None.
Let’s discuss the usage of np.append function in detail.
Append to a one-dimensional array:
When arr is a one-dimensional array, the np.append function appends values to the end of arr and returns a new One-dimensional array. For example:
import numpy as np arr = np.array([1, 2, 3]) values = np.array([4, 5, 6]) new_arr = np.append(arr, values) print(new_arr) # [1 2 3 4 5 6]
Append to a two-dimensional array:
When arr is a two-dimensional array, we need to specify the position of the appended axis. By default, axis=None, the np.append function flattens arr into a one-dimensional array and then appends values to the end. For example:
import numpy as np arr = np.array([[1, 2, 3], [4, 5, 6]]) values = np.array([[7, 8, 9]]) new_arr = np.append(arr, values) print(new_arr) # [1 2 3 4 5 6 7 8 9]
If we specify axis=0, values will be appended to the end of arr row by row. For example:
import numpy as np arr = np.array([[1, 2, 3], [4, 5, 6]]) values = np.array([[7, 8, 9]]) new_arr = np.append(arr, values, axis=0) print(new_arr) [[1 2 3] [4 5 6] [7 8 9]]
If we specify axis=1, values will be appended to the end of arr by column. For example:
import numpy as np arr = np.array([[1, 2, 3], [4, 5, 6]]) values = np.array([[7], [8]]) new_arr = np.append(arr, values, axis=1) print(new_arr) [[1 2 3 7] [4 5 6 8]]
Append to a multi-dimensional array:
When arr is a multi-dimensional array, we also need to specify the position of the appended axis. For example:
import numpy as np arr = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]]) values = np.array([[[9, 10], [11, 12]]]) new_arr = np.append(arr, values, axis=0) print(new_arr) [[[ 1 2] [ 3 4]] [[ 5 6] [ 7 8]] [[ 9 10] [11 12]]]
In a multi-dimensional array, we can specify axis=0, axis=1, axis=2, etc. to append to different axis positions.
It should be noted that the np.append function will return a new array every time it is called, and the original array will not change. Therefore, in actual use, we usually need to assign the returned new array to a variable for subsequent operations.
np.append function is a function in the NumPy library used to append elements to the end of an array. It can be used for one-dimensional, two-dimensional and multi-dimensional arrays to control the way of appending by specifying the position of the axis. Proficient in the usage of np.append function is very helpful for array operations and data processing.
The above is the detailed content of What is the usage of np.append function?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

This article demonstrates creating mocks and stubs in Go for unit testing. It emphasizes using interfaces, provides examples of mock implementations, and discusses best practices like keeping mocks focused and using assertion libraries. The articl

The article discusses writing unit tests in Go, covering best practices, mocking techniques, and tools for efficient test management.

The article explains how to use the pprof tool for analyzing Go performance, including enabling profiling, collecting data, and identifying common bottlenecks like CPU and memory issues.Character count: 159

This article explores Go's custom type constraints for generics. It details how interfaces define minimum type requirements for generic functions, improving type safety and code reusability. The article also discusses limitations and best practices

This article explores using tracing tools to analyze Go application execution flow. It discusses manual and automatic instrumentation techniques, comparing tools like Jaeger, Zipkin, and OpenTelemetry, and highlighting effective data visualization

The article discusses Go's reflect package, used for runtime manipulation of code, beneficial for serialization, generic programming, and more. It warns of performance costs like slower execution and higher memory use, advising judicious use and best

The article discusses managing Go module dependencies via go.mod, covering specification, updates, and conflict resolution. It emphasizes best practices like semantic versioning and regular updates.

The article discusses using table-driven tests in Go, a method that uses a table of test cases to test functions with multiple inputs and outcomes. It highlights benefits like improved readability, reduced duplication, scalability, consistency, and a
