


Asynchronous Coroutine Development Practice: Optimizing the Speed of Uploading and Downloading Large Files
Asynchronous Coroutine Development Practice: Optimizing the Speed of Uploading and Downloading Large Files
With the development and popularization of the Internet, file transmission has become the norm. But when the transferred files become larger and larger, traditional file uploading and downloading methods will encounter many difficulties. In order to optimize the transmission speed of large files and improve user experience, we can implement it through asynchronous coroutines. This article will share how to use asynchronous coroutine technology to optimize the upload and download speed of large files, and provide specific code examples.
1. Introduction to asynchronous coroutine technology
Asynchronous coroutine is essentially a programming model. Its characteristic is that when blocking occurs, it can immediately release control of the current thread, hand over control to other tasks to continue execution, and wait until the blocking is over before returning to execution, thereby realizing switching between multiple tasks to achieve better results. Efficient processing effect.
Common asynchronous coroutine technologies include asyncio in Python, Callback and Promise in Node.js, etc. Different languages and technologies may have different implementation methods, but essentially they are all designed to better utilize computer resources to improve concurrency and processing efficiency.
2. Optimize the speed of large file uploads
- Use chunked upload
When uploading large files, transfer the entire file to the server at one time This will inevitably lead to network congestion and slow transmission speeds. To avoid this problem, large files can be uploaded into multiple chunks. Each chunk is an independent data packet and can be uploaded in parallel to speed up the upload.
Using asynchronous coroutine technology, you can easily implement block uploads and transmit multiple blocks of data in parallel to achieve more efficient upload operations. The following is the specific code implementation.
import aiohttp import asyncio async def upload_chunk(session, url, file, offset, size): headers = {'Content-Length': str(size), 'Content-Range': f'bytes {offset}-{offset+size-1}/{file_size}'} data = file.read(size) async with session.put(url, headers=headers, data=data) as resp: return await resp.json() async def upload_file_with_chunks(session, url, file): file_size = os.path.getsize(file.name) chunk_size = 1024 * 1024 * 5 #每块数据的大小为5MB offset = 0 tasks = [] while offset < file_size: size = chunk_size if offset+chunk_size < file_size else file_size-offset tasks.append(upload_chunk(session, url, file, offset, size)) offset += size return await asyncio.gather(*tasks) async def main(): async with aiohttp.ClientSession() as session: url = 'http://example.com/upload' file = open('large_file.mp4', 'rb') result = await upload_file_with_chunks(session, url, file) print(result) asyncio.run(main())
In this code, we divide the entire file into data blocks with a size of 5MB, and then use the asyncio.gather()
method to concurrently execute the tasks of uploading each data block. to speed up uploads. The idea of chunked uploading also applies to file downloading. Please see the next section for details.
- Multi-threaded upload
In addition to using multi-threaded upload, you can also use multi-threading to upload large files. Using multi-threading can make fuller use of your computer's multi-core resources, thereby speeding up file uploads. The following is the specific code implementation.
import threading import requests class MultiPartUpload(object): def __init__(self, url, file_path, num_thread=4): self.url = url self.file_path = file_path self.num_thread = num_thread self.file_size = os.path.getsize(self.file_path) self.chunk_size = self.file_size//num_thread self.threads = [] self.lock = threading.Lock() def upload(self, i): start = i * self.chunk_size end = start + self.chunk_size - 1 headers = {"Content-Range": "bytes %s-%s/%s" % (start, end, self.file_size), "Content-Length": str(self.chunk_size)} data = open(self.file_path, 'rb') data.seek(start) resp = requests.put(self.url, headers=headers, data=data.read(self.chunk_size)) self.lock.acquire() print("Part %d status: %s" % (i, resp.status_code)) self.lock.release() def run(self): for i in range(self.num_thread): t = threading.Thread(target=self.upload, args=(i,)) self.threads.append(t) for t in self.threads: t.start() for t in self.threads: t.join() if __name__ == '__main__': url = 'http://example.com/upload' file = 'large_file.mp4' uploader = MultiPartUpload(url, file) uploader.run()
In this code, we use the threading
module in the Python standard library to implement multi-threaded upload. Divide the entire file into multiple data blocks, and each thread is responsible for uploading one of the blocks, thereby achieving concurrent uploads. Use a lock mechanism to protect thread safety during concurrent uploads.
3. Optimize the speed of large file downloads
In addition to uploading, downloading large files is also a very common requirement, and optimization can also be achieved through asynchronous coroutines.
- Bulk download
Similar to chunked upload, chunked download divides the entire file into several chunks, each chunk is downloaded independently, and multiple chunks of data are transmitted in parallel. This speeds up downloads. The specific code implementation is as follows:
import aiohttp import asyncio import os async def download_chunk(session, url, file, offset, size): headers = {'Range': f'bytes={offset}-{offset+size-1}'} async with session.get(url, headers=headers) as resp: data = await resp.read() file.seek(offset) file.write(data) return len(data) async def download_file_with_chunks(session, url, file): async with session.head(url) as resp: file_size = int(resp.headers.get('Content-Length')) chunk_size = 1024 * 1024 * 5 #每块数据的大小为5MB offset = 0 tasks = [] while offset < file_size: size = chunk_size if offset+chunk_size < file_size else file_size-offset tasks.append(download_chunk(session, url, file, offset, size)) offset += size return await asyncio.gather(*tasks) async def main(): async with aiohttp.ClientSession() as session: url = 'http://example.com/download/large_file.mp4' file = open('large_file.mp4', 'wb+') await download_file_with_chunks(session, url, file) asyncio.run(main())
In this code, we use the aiohttp
library to perform parallel downloads of asynchronous coroutines. Similarly, divide the entire file into 5MB data blocks, and then use the asyncio.gather()
method to execute the task of downloading each data block concurrently to speed up file downloading.
- Multi-threaded download
In addition to downloading in chunks, you can also use multi-threaded downloading to download large files. The specific code implementation is as follows:
import threading import requests class MultiPartDownload(object): def __init__(self, url, file_path, num_thread=4): self.url = url self.file_path = file_path self.num_thread = num_thread self.file_size = requests.get(self.url, stream=True).headers.get('Content-Length') self.chunk_size = int(self.file_size) // self.num_thread self.threads = [] self.lock = threading.Lock() def download(self, i): start = i * self.chunk_size end = start + self.chunk_size - 1 if i != self.num_thread - 1 else '' headers = {"Range": "bytes=%s-%s" % (start, end)} data = requests.get(self.url, headers=headers, stream=True) with open(self.file_path, 'rb+') as f: f.seek(start) f.write(data.content) self.lock.acquire() print("Part %d Downloaded." % i) self.lock.release() def run(self): for i in range(self.num_thread): t = threading.Thread(target=self.download, args=(i,)) self.threads.append(t) for t in self.threads: t.start() for t in self.threads: t.join() if __name__ == '__main__': url = 'http://example.com/download/large_file.mp4' file = 'large_file.mp4' downloader = MultiPartDownload(url, file) downloader.run()
In this code, we also use the threading
module in the Python standard library to implement multi-threaded downloading. The entire file is divided into multiple data blocks, and each thread is responsible for downloading one of the blocks, thereby achieving concurrent downloading. The lock mechanism is also used to protect thread safety during concurrent downloads.
4. Summary
This article introduces how to use asynchronous coroutine technology to optimize the upload and download speed of large files. By blocking and parallel processing in upload and download operations, the efficiency of file transfer can be quickly improved. Whether it is in asynchronous coroutines, multi-threading, distributed systems and other fields, it has a wide range of applications. Hope this article helps you!
The above is the detailed content of Asynchronous Coroutine Development Practice: Optimizing the Speed of Uploading and Downloading Large Files. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



There is a parent-child relationship between functions and goroutines in Go. The parent goroutine creates the child goroutine, and the child goroutine can access the variables of the parent goroutine but not vice versa. Create a child goroutine using the go keyword, and the child goroutine is executed through an anonymous function or a named function. A parent goroutine can wait for child goroutines to complete via sync.WaitGroup to ensure that the program does not exit before all child goroutines have completed.

Summary: Asynchronous programming in C++ allows multitasking without waiting for time-consuming operations. Use function pointers to create pointers to functions. The callback function is called when the asynchronous operation completes. Libraries such as boost::asio provide asynchronous programming support. The practical case demonstrates how to use function pointers and boost::asio to implement asynchronous network requests.

Concurrency and coroutines are used in GoAPI design for: High-performance processing: Processing multiple requests simultaneously to improve performance. Asynchronous processing: Use coroutines to process tasks (such as sending emails) asynchronously, releasing the main thread. Stream processing: Use coroutines to efficiently process data streams (such as database reads).

Coroutine is an abstract concept for executing tasks concurrently, and goroutine is a lightweight thread function in the Go language that implements the concept of coroutine. The two are closely related, but goroutine resource consumption is lower and managed by the Go scheduler. Goroutine is widely used in actual combat, such as concurrently processing web requests and improving program performance.

Controlling the life cycle of a Go coroutine can be done in the following ways: Create a coroutine: Use the go keyword to start a new task. Terminate coroutines: wait for all coroutines to complete, use sync.WaitGroup. Use channel closing signals. Use context context.Context.

3 common problems and solutions in asynchronous programming in Java frameworks: Callback Hell: Use Promise or CompletableFuture to manage callbacks in a more intuitive style. Resource contention: Use synchronization primitives (such as locks) to protect shared resources, and consider using thread-safe collections (such as ConcurrentHashMap). Unhandled exceptions: Explicitly handle exceptions in tasks and use an exception handling framework (such as CompletableFuture.exceptionally()) to handle exceptions.

The Go framework uses Go's concurrency and asynchronous features to provide a mechanism for efficiently handling concurrent and asynchronous tasks: 1. Concurrency is achieved through Goroutine, allowing multiple tasks to be executed at the same time; 2. Asynchronous programming is implemented through channels, which can be executed without blocking the main thread. Task; 3. Suitable for practical scenarios, such as concurrent processing of HTTP requests, asynchronous acquisition of database data, etc.

The advantages of asynchronous programming in PHP include higher throughput, lower latency, better resource utilization, and scalability. Disadvantages include complexity, difficulty in debugging, and limited library support. In the actual case, ReactPHP is used to handle WebSocket connections, demonstrating the practical application of asynchronous programming.
