Quick Start: An Overview of Python Artificial Intelligence Libraries

WBOY
Release: 2023-12-23 08:10:05
Original
1240 people have browsed it

Quick Start: An Overview of Python Artificial Intelligence Libraries

Quick Start: Overview of Python artificial intelligence libraries, specific code examples are required

Introduction:
With the rapid development of artificial intelligence technology, it is applied to machine learning and There are also more and more Python artificial intelligence libraries for deep learning. These libraries provide a variety of powerful tools and algorithms, making it easier for developers to build and train their own artificial intelligence models. This article will introduce some commonly used Python artificial intelligence libraries and provide specific code examples to help readers get started quickly.

1. TensorFlow
TensorFlow is an open source machine learning library developed by Google and is widely used in the field of deep learning. It provides a rich high-level API and supports a variety of network structures, such as convolutional neural network (CNN), recurrent neural network (RNN), etc. The following is an example of using TensorFlow for image classification:

import tensorflow as tf
from tensorflow import keras

# 加载数据集
(x_train, y_train), (x_test, y_test) = keras.datasets.cifar10.load_data()

# 数据预处理
x_train = x_train / 255.0
x_test = x_test / 255.0

# 构建模型
model = keras.models.Sequential([
    keras.layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)),
    keras.layers.MaxPooling2D((2, 2)),
    keras.layers.Flatten(),
    keras.layers.Dense(10, activation='softmax')
])

# 编译模型
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

# 训练模型
model.fit(x_train, y_train, epochs=10, validation_data=(x_test, y_test))

# 评估模型
test_loss, test_acc = model.evaluate(x_test, y_test, verbose=2)
print('
Test accuracy:', test_acc)
Copy after login

2. PyTorch
PyTorch is an open source deep learning library developed by Facebook, which features dynamic calculation graphs and automatic differentiation. The following is an example of using PyTorch for image classification:

import torch
import torchvision
from torchvision import datasets, transforms
import torch.nn as nn
import torch.optim as optim

# 定义数据转换
transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5,), (0.5,))])

# 加载数据集
trainset = datasets.MNIST(root='./data', train=True,
                            download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64,
                                          shuffle=True, num_workers=2)

testset = datasets.MNIST(root='./data', train=False,
                           download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=64,
                                         shuffle=False, num_workers=2)

# 定义模型
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 4 * 4, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 4 * 4)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

# 实例化模型
net = Net()

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

# 训练模型
for epoch in range(10):  
    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        inputs, labels = data

        optimizer.zero_grad()

        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if i % 2000 == 1999:    
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 2000))
            running_loss = 0.0

# 测试模型
correct = 0
total = 0
with torch.no_grad():
    for data in testloader:
        images, labels = data
        outputs = net(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print('Accuracy of the network on the 10000 test images: %d %%' % (
    100 * correct / total))
Copy after login

Conclusion:
This article introduces two commonly used Python artificial intelligence libraries, TensorFlow and PyTorch, and provides specific code examples to help readers Get started quickly. Of course, in addition to these two libraries, there are many other excellent Python artificial intelligence libraries, such as Keras, Scikit-learn, etc. Readers can choose the library that suits them for learning and application according to their own needs. I hope this article can be helpful to readers in their learning and practice in the field of artificial intelligence.

The above is the detailed content of Quick Start: An Overview of Python Artificial Intelligence Libraries. For more information, please follow other related articles on the PHP Chinese website!

source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template