mysql高可用架构方案之二(keepalived+lvs+读写分离+负载均衡)_MySQL
mysql主从复制与lvs+keepalived实现负载高可用
目录
1、前言 4
2、原理 4
2.1、概要介绍 4
2.2、工作原理 4
2.3、实际作用 4
3方案 4
3.1、环境 4
3.2、架构图 5
3.3、设计原理 6
4、相关软件安装 6
4、配置mysql的主从 7
5、通过lvs+keepalived实现负载与热备,并实现读写分离 8
1、前言
最近研究了下高可用的东西,这里总结一下mysql主从复制读写分离度的高可用方案,可以提高服务器的使用效率,也可以提高提高维护效率。同时应用的效率也会有一定的提升,如果改造需要应用修改读取的ip地址与写入的ip地址,改造起来还算容易。
2、原理
2.1、概要介绍
如果将TCP/IP划分为5层,则Keepalived就是一个类似于3~5层交换机制的软件,具有3~5层交换功能,其主要作用是检测web服务器的状 态,如果某台web服务器故障,Keepalived将检测到并将其从系统中剔除,当该web服务器工作正常后Keepalived自动将其加入到服务器 群中,这些工作全部自动完成,而不需要人工干预,只需要人工修复故障的web服务器即可。
2.2、工作原理
Keepalived基于VRRP协议来实现高可用解决方案,利用其避免单点故障,通常这个解决方案中,至少有2台服务器运行Keepalived,即一 台为MASTER,另一台为BACKUP,但对外表现为一个虚拟IP,MASTER会发送特定消息给BACKUP,当BACKUP收不到该消息时,则认为 MASTER故障了,BACKUP会接管虚拟IP,继续提供服务,从而保证了高可用性,3层机理是发送ICMP数据包即PING给某台服务器,如果不痛,则认为其故障,并从服务器群中剔除。4层机理是检测TCP端口号状态来判断某台服务器是否故障,如果故障,则从服务器群中剔除。5层机理是根据用户的设定检查某个服务器应用程序是否正常运行,如果不正常,则从服务器群中剔除。3、
2.3、实际作用
Keepalived+lvs主要用作RealServer的健康检查,以及负载均衡设备MASTER和BACKUP之间failover的实现。
3方案
本案例先使用两台linux做双机MASTER-SLAVE高可用,实现都写分离,用于提高查询性能),采用MYSQL5.6.x的半同步实现数据复制和同步,使用keepalived来监控MYSQL和提供读写VIP浮动。Keepalived在这里主要用作RealServer的健康状态检查以及LoadBalance主机和BackUP主机之间failover的实现
任何一台主机宕机都不会影响对外提供服务(读写vip可以浮动),保持服务的高可用。
3.1、环境
主机A:192.168.150.171
主机B:192.168.150.172
W-VIP:192.168.150.173 (负责写入)
R-VIP:192.168.150.174 (负责读取)
Client:任意,只要能访问以上三个IP即可
3.2、架构图
具体架构图如下:
3.3、设计原理(异常情况)
1、 服务器A和B,通过mysql的slave进程是用binlog同步数据。
2、 通过keepalived启用两个虚IP:W-VIP/R-VIP,一个负责写入,一个负责读取,实现读写分离。
3、 A和B都存在时,W-VIP下将请求转发至主机A,R-VIP将请求转发给A和B,实现负载均衡。
4、 当主机A异常时,B接管服务,W-VIP/R-VIP此时漂到了主机B上,此时这两个虚IP下都是主机B,实现高可用
5、 当主机B异常时,R-VIP会将B踢出,其他不变
具体实现后的效果
正常状态
Prot LocalAddress:Port Scheduler Flags -> RemoteAddress:Port Forward Weight ActiveConn InActConn TCP 192.168.150.173:3306 wrr persistent 60 -> 192.168.150.171:3306 Local 3 0 0 TCP 192.168.150.174:3306 wrr persistent 60 -> 192.168.150.172:3306 Route 3 0 0 -> 192.168.150.171:3306 Local 1 0 0
A故障后,B的状态
Prot LocalAddress:Port Scheduler Flags -> RemoteAddress:Port Forward Weight ActiveConn InActConn TCP 192.168.150.173:3306 wrr persistent 60 -> 192.168.150.172:3306 Local 3 0 0 TCP 192.168.150.174:3306 wrr persistent 60 -> 192.168.150.172:3306 Local 3 0 0
架构图
4、相关软件安装
1、 mysql 可以根据需要进行安装,此处省略
2、 lvs+keepalived的安装
关联lvs与keepalived的ipvs所需的内核信息
ln -s /usr/src/kernels/2.6.18-194.el5-x86_64/ /usr/src/linux
安装lvs
下载:wget http://www.linuxvirtualserver.org/software/kernel-2.6/ipvsadm-1.24.tar.gz
tar -zxvf ipvsadm-1.24.tar.gz
cd tar -zxvf ipvsadm-1.24
make
make install
yum install ipv* 安装
验证
ipvsadm –v
ipvsadm v1.24 2003/06/07 (compiled with getopt_long and IPVS v1.2.0)说明安装成功
安装keepalived
tar –zxvf keepalived-1.2.12.tar.gz cd keepalived-1.2.12 ./configure --prefix=/usr/local/keepalived/ make make install ln -s /usr/local/keepalived/etc/keepalived /etc/ ln -s /usr/local/keepalived/etc/rc.d/init.d/keepalived /etc/rc.d/init.d/ ln -s /usr/local/keepalived/etc/sysconfig/keepalived /etc/sysconfig/ ln -s /usr/local/keepalived/bin/genhash /bin/ ln -s /usr/local/keepalived/sbin/keepalived /sbin/
configure时注意Use IPVS Framework、IPVS sync daemon support 、Use VRRP Framework要返回yes,否则无法关联ipvs功能
4、配置mysql的主从
Master(210.171)的配置
vi /etc/my.cnf
添加如下内容:
server-id = 1 ##master ID binlog-do-db = ppl ##允许同步的库 binlog-ignore-db = mysql ##忽略同步的库,也就是不能同步的库 ##配置文件中还需开启log-bin,例如log-bin = mysql-bin mysql –uroot –p
以下内容在mysql中执行
mysql> grant replication slave on *.* to ‘repdb01’@’%’ identified by '123456'; mysql>create database db01; mysql>flush logs; mysql>show master status; mysql>use db01 mysql> create table test(name char);
返回一表格如下,记住File的内容,等下slave的配置中要用到
Slave的配置
vi /etc/my.cnf
添加如下内容:
server-id = 2 ##slave ID master-host = 192.168.150.171 ##指定master的地址 master-user = repdb01 ##同步所用的账号 master-password = 123456 ##同步所用的密码 master-port = 3306 ##master上mysql的端口 replicate-do-db = db01 ##要同步的库名 replicate-ignore-db = mysql ##忽略的库名 slave-skip-errors = 1062 ##当同步异常时,那些错误跳过,本例为1062错误 #log-slave-updates ##同步的同时,也记录自己的binlog日志,如果还有台slave是通过这台机器进行同步,那需要增加此项, #skip-slave-start ##启动时不自动开启slave进程 #read-only ##将库设为只读模式,只能从master同步,不能直接写入(避免自增键值冲突) mysql –uroot –p
以下内容在mysql中执行
mysql>create database db01; mysql>change master to master_log_file=’mysql-bin.000007’,master_log=106; mysql>slave start; mysql>show slave status \G
在返回值中查看,如果slave_IO_Runing与slave_SQL_Runing的值都为Yes说明同步成功
5、通过lvs+keepalived实现负载与热备,并实现读写分离
Master上的配置 vi /etc/keepalived/keepalived.conf ! Configuration File for keepalived global_defs { router_id MySQL-HA } vrrp_instance VI_1 { state BACKUP interface eth0 virtual_router_id 90 priority 100 advert_int 1 notify_master "/usr/local/mysql/bin/remove_slave.sh" nopreempt authentication { auth_type PASS auth_pass abcd1234 } virtual_ipaddress { 192.168.150.173 label eth0:1 192.168.150.174 label eth0:2 } } virtual_server 192.168.150.173 3306 { delay_loop 2 lb_algo wrr lb_kind DR persistence_timeout 60 protocol TCP real_server 192.168.150.171 3306 { weight 3 notify_down /usr/local/mysql/bin/mysql.sh TCP_CHECK { connect_timeout 10 nb_get_retry 3 delay_before_retry 3 connect_port 3306 } } } virtual_server 192.168.150.174 3306 { delay_loop 2 lb_algo wrr lb_kind DR persistence_timeout 60 protocol TCP real_server 192.168.150.171 3306 { weight 1 notify_down /usr/local/mysql/bin/mysql.sh TCP_CHECK { connect_timeout 10 nb_get_retry 3 delay_before_retry 3 connect_port 3306 } } real_server 192.168.150.172 3306 { weight 3 TCP_CHECK { connect_timeout 10 nb_get_retry 3 delay_before_retry 3 connect_port 3306 } } } vi /usr/local/mysql/bin/remove_slave.sh #!/bin/bash user=root password=123456 log=/root/mysqllog/remove_slave.log #-------------------------------------------------------------------------------------- echo "`date`" >> $log /usr/bin/mysql -u$user -p$password -e "set global read_only=OFF;reset master;stop slave;change master to master_host='localhost';" >> $log /bin/sed -i 's#read-only#\#read-only#' /etc/my.cnf chomd 755 /usr/local/mysql/bin/remove_slave.sh vi /usr/local/mysql/bin/mysql.sh #!/bin/bash /etc/init.d/keepalived stop Slave上的配置 vi /etc/keepalived/keepalived.conf ! Configuration File for keepalived global_defs { router_id MySQL-HA } vrrp_instance VI_1 { state BACKUP interface eth0 virtual_router_id 90 priority 99 advert_int 1 notify_master "/usr/local/mysql/bin/remove_slave.sh" authentication { auth_type PASS auth_pass ppl.com } virtual_ipaddress { 192.168.150.173 label eth0:1 192.168.150.174 label eth0:2 } } virtual_server 192.168.150.173 3306 { delay_loop 2 lb_algo wrr lb_kind DR persistence_timeout 60 protocol TCP real_server 192.168.150.172 3306 { weight 3 notify_down /usr/local/mysql/bin/mysql.sh TCP_CHECK { connect_timeout 10 nb_get_retry 3 delay_before_retry 3 connect_port 3306 } } } virtual_server 192.168.150.174 3306 { delay_loop 2 lb_algo wrr lb_kind DR persistence_timeout 60 protocol TCP real_server 192.168.150.172 3306 { weight 3 notify_down /usr/local/mysql/bin/mysql.sh TCP_CHECK { connect_timeout 10 nb_get_retry 3 delay_before_retry 3 connect_port 3306 } } # real_server 192.168.150.172 3306 { # weight 3 # TCP_CHECK { # connect_timeout 10 # nb_get_retry 3 # delay_before_retry 3 # connect_port 3306 # } # } } vi /usr/local/mysql/bin/remove_slave.sh #!/bin/bash user=root password=123456 log=/root/mysqllog/remove_slave.log #-------------------------------------------------------------------------------------- echo "`date`" >> $log /usr/bin/mysql -u$user -p$password -e "set global read_only=OFF;reset master;stop slave;change master to master_host='localhost';" >> $log /bin/sed -i 's#read-only#\#read-only#' /etc/my.cnf chomd 755 /usr/local/mysql/bin/remove_slave.sh vi /usr/local/mysql/bin/mysql.sh #!/bin/bash /etc/init.d/keepalived stop vi /usr/local/keepalived/bin/lvs-rs.sh #!/bin/bash WEB_VIP=192.168.150.174 . /etc/rc.d/init.d/functions case "$1" in start) ifconfig lo:0 $WEB_VIP netmask 255.255.255.255 broadcast $WEB_VIP /sbin/route add -host $WEB_VIP dev lo:0 echo "1" >/proc/sys/net/ipv4/conf/lo/arp_ignore echo "2" >/proc/sys/net/ipv4/conf/lo/arp_announce echo "1" >/proc/sys/net/ipv4/conf/all/arp_ignore echo "2" >/proc/sys/net/ipv4/conf/all/arp_announce sysctl -p >/dev/null 2>&1 echo "RealServer Start OK" ;; stop) ifconfig lo:0 down route del $WEB_VIP >/dev/null 2>&1 echo "0" >/proc/sys/net/ipv4/conf/lo/arp_ignore echo "0" >/proc/sys/net/ipv4/conf/lo/arp_announce echo "0" >/proc/sys/net/ipv4/conf/all/arp_ignore echo "0" >/proc/sys/net/ipv4/conf/all/arp_announce echo "RealServer Stoped" ;; status) # Status of LVS-DR real server. islothere=`/sbin/ifconfig lo:0 | grep $WEB_VIP` isrothere=`netstat -rn | grep "lo:0" | grep $web_VIP` if [ ! "$islothere" -o ! "isrothere" ];then # Either the route or the lo:0 device # not found. echo "LVS-DR real server Stopped." else echo "LVS-DR Running." fi ;; *) # Invalid entry. echo "$0: Usage: $0 {start|status|stop}" exit 1 ;; esac exit 0 chmod 755 /usr/local/keepalived/bin/lvs-rs.sh echo “/usr/local/keepalived/bin/lvs-rs.sh start” >>/etc/rc.local
vi /etc/my.cnf
将这两个参数前边的 # 去掉,重启mysql
#skip-slave-start
#read-only
登陆mysql,手动将slave进程启动
mysql>slave start;
先启动master上的keepalived,正常后再启动slave上的。
启动后 主库可以查看ip a
[root@rac3 ~]# ip a 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo inet6 ::1/128 scope host valid_lft forever preferred_lft forever 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast qlen 1000 link/ether 00:50:56:95:06:1f brd ff:ff:ff:ff:ff:ff inet 192.168.150.171.171/24 brd 192.168.0.255 scope global eth0 inet 192.168.150.173/32 scope global eth0:1 inet 192.168.150.174/32 scope global eth0:2 inet6 fe80::250:56ff:fe95:61f/64 scope link valid_lft forever preferred_lft forever 3: sit0: <NOARP> mtu 1480 qdisc noop link/sit 0.0.0.0 brd 0.0.0.0 slave上查看 [root@rac1 keepalive]# ip a 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 16436 qdisc noqueue link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo inet 192.168.150.174/32 brd 192.168.150.174 scope global lo:0 inet6 ::1/128 scope host valid_lft forever preferred_lft forever 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast qlen 1000 link/ether 00:50:56:95:5e:b4 brd ff:ff:ff:ff:ff:ff inet 192.168.150.188/24 brd 192.168.0.255 scope global eth0 inet 192.168.150.252/24 brd 192.168.0.255 scope global secondary eth0:1 inet 192.168.150.186/24 brd 192.168.0.255 scope global secondary eth0:4 inet6 fe80::250:56ff:fe95:5eb4/64 scope link valid_lft forever preferred_lft forever 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast qlen 1000 link/ether 00:50:56:95:11:ba brd ff:ff:ff:ff:ff:ff inet 10.10.10.188/24 brd 10.10.10.255 scope global eth1 inet 169.254.157.163/16 brd 169.254.255.255 scope global eth1:1 inet6 fe80::250:56ff:fe95:11ba/64 scope link valid_lft forever preferred_lft forever 4: sit0: <NOARP> mtu 1480 qdisc noop link/sit 0.0.0.0 brd 0.0.0.0
发现210.174 读的vip 在主备机上都可以看到
210.173 写入vip在主上才能看到
后续多台实验进行中,敬请等待

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

The concept of deep learning originates from the research of artificial neural networks. A multi-layer perceptron containing multiple hidden layers is a deep learning structure. Deep learning combines low-level features to form more abstract high-level representations to represent categories or characteristics of data. It is able to discover distributed feature representations of data. Deep learning is a type of machine learning, and machine learning is the only way to achieve artificial intelligence. So, what are the differences between various deep learning system architectures? 1. Fully Connected Network (FCN) A fully connected network (FCN) consists of a series of fully connected layers, with every neuron in each layer connected to every neuron in another layer. Its main advantage is that it is "structure agnostic", i.e. no special assumptions about the input are required. Although this structural agnostic makes the complete

Artificial intelligence is a computing system that attempts to imitate human intelligence, including some human functions that are intuitively related to intelligence, such as learning, problem solving, and rational thinking and action. Broadly interpreted, the term AI covers many closely related fields such as machine learning. Systems that make heavy use of AI are having significant social impacts in areas such as healthcare, transportation, finance, social networks, e-commerce, and education. This growing social impact has also brought with it a series of risks and concerns, including errors in artificial intelligence software, cyberattacks and artificial intelligence system security. Therefore, the issue of verification of AI systems, and the broader topic of trustworthy AI, has begun to attract attention from the research community. “Verifiable AI” has been confirmed

Some time ago, a tweet pointing out the inconsistency between the Transformer architecture diagram and the code in the Google Brain team's paper "AttentionIsAllYouNeed" triggered a lot of discussion. Some people think that Sebastian's discovery was an unintentional mistake, but it is also surprising. After all, considering the popularity of the Transformer paper, this inconsistency should have been mentioned a thousand times. Sebastian Raschka said in response to netizen comments that the "most original" code was indeed consistent with the architecture diagram, but the code version submitted in 2017 was modified, but the architecture diagram was not updated at the same time. This is also the root cause of "inconsistent" discussions.

Deep learning models for vision tasks (such as image classification) are usually trained end-to-end with data from a single visual domain (such as natural images or computer-generated images). Generally, an application that completes vision tasks for multiple domains needs to build multiple models for each separate domain and train them independently. Data is not shared between different domains. During inference, each model will handle a specific domain. input data. Even if they are oriented to different fields, some features of the early layers between these models are similar, so joint training of these models is more efficient. This reduces latency and power consumption, and reduces the memory cost of storing each model parameter. This approach is called multi-domain learning (MDL). In addition, MDL models can also outperform single

This is an era of AI empowerment, and machine learning is an important technical means to achieve AI. So, is there a universal machine learning system architecture? Within the cognitive scope of experienced programmers, Anything is nothing, especially for system architecture. However, it is possible to build a scalable and reliable machine learning system architecture if applicable to most machine learning driven systems or use cases. From a machine learning life cycle perspective, this so-called universal architecture covers key machine learning stages, from developing machine learning models, to deploying training systems and service systems to production environments. We can try to describe such a machine learning system architecture from the dimensions of 10 elements. 1.

SpringDataJPA is based on the JPA architecture and interacts with the database through mapping, ORM and transaction management. Its repository provides CRUD operations, and derived queries simplify database access. Additionally, it uses lazy loading to only retrieve data when necessary, thus improving performance.

For the next generation of centralized electronic and electrical architecture, the use of central+zonal central computing unit and regional controller layout has become a must-have option for various OEMs or tier1 players. Regarding the architecture of the central computing unit, there are three ways: separation SOC, hardware isolation, software virtualization. The centralized central computing unit will integrate the core business functions of the three major domains of autonomous driving, smart cockpit and vehicle control. The standardized regional controller has three main responsibilities: power distribution, data services, and regional gateway. Therefore, the central computing unit will integrate a high-throughput Ethernet switch. As the degree of integration of the entire vehicle becomes higher and higher, more and more ECU functions will be slowly absorbed into the regional controller. And platformization

Paper address: https://arxiv.org/abs/2307.09283 Code address: https://github.com/THU-MIG/RepViTRepViT performs well in the mobile ViT architecture and shows significant advantages. Next, we explore the contributions of this study. It is mentioned in the article that lightweight ViTs generally perform better than lightweight CNNs on visual tasks, mainly due to their multi-head self-attention module (MSHA) that allows the model to learn global representations. However, the architectural differences between lightweight ViTs and lightweight CNNs have not been fully studied. In this study, the authors integrated lightweight ViTs into the effective
