Home System Tutorial LINUX Linux debugger stack expansion!

Linux debugger stack expansion!

Jan 06, 2024 pm 10:25 PM
linux linux tutorial Red Hat linux system linux command linux certification red hat linux linux video

Introduction Sometimes the most important information you need to know is how your current program state got there. There is a backtrace command, which gives you the current function call chain of your program. This post will show you how to implement stack unwinding on x86_64 to generate such a traceback.
Series Index

These links will go live as other posts are published.

  1. Preparing the environment
  2. Breakpoint
  3. Registers and Memory
  4. ELF and DWARF
  5. Source code and signals
  6. Source code level step by step execution
  7. Source level breakpoints
  8. Stack expansion
  9. Read variables
  10. Next steps

Use the following program as an example:

void a() {
//stopped here
}
void b() {
a();
}
void c() {
a();
}
int main() {
b();
c();
}
Copy after login

If the debugger stops at the //stopped here' line, there are two ways to reach it: main->b->a or main->c->a`. If we set a breakpoint with LLDB, continue execution and request a traceback, then we get the following:

* frame #0: 0x00000000004004da a.out`a() + 4 at bt.cpp:3
frame #1: 0x00000000004004e6 a.out`b() + 9 at bt.cpp:6
frame #2: 0x00000000004004fe a.out`main + 9 at bt.cpp:14
frame #3: 0x00007ffff7a2e830 libc.so.6`__libc_start_main + 240 at libc-start.c:291
frame #4: 0x0000000000400409 a.out`_start + 41
Copy after login

This means that we are currently in function a, a jumps from function b, b jumps from main, and so on. The last two frames are how the compiler bootstraps the main function.

The question now is how we implement it on x86_64. The most robust approach would be to parse the .eh_frame portion of the ELF file and figure out how to unwind the stack from there, but that would be a pain. You could do it using libunwind or similar, but that's boring. Instead, we assume that the compiler has set up the stack in some way and we will traverse it manually. In order to do this, we first need to understand the layout of the stack.

High
| ... |
+---------+
+24| Arg 1 |
+---------+
+16| Arg 2 |
+---------+
+ 8| Return |
+---------+
EBP+--> |Saved EBP|
+---------+
- 8| Var 1 |
+---------+
ESP+--> | Var 2 |
+---------+
| ... |
Low
Copy after login

As you can see, the frame pointer of the last stack frame is stored at the beginning of the current stack frame, creating a linked list of pointers. The stack is unwound based on this linked list. We can find the function for the next frame in the list by looking for the return address in the DWARF message. Some compilers will ignore tracking the frame base address of EBP because this can be expressed as an offset from ESP and free an extra register. Even with optimizations enabled, passing -fno-omit-frame-pointer to GCC or Clang will force it to follow the conventions we rely on.

We will do all the work in the print_backtrace function:

void debugger::print_backtrace() {
Copy after login

The first thing to decide is what format to use to print out the frame information. I used a lambda to roll out this method:

auto output_frame = [frame_number = 0] (auto&& func) mutable {
std::cout << "frame #" << frame_number++ << ": 0x" << dwarf::at_low_pc(func)
<< ' ' << dwarf::at_name(func) << std::endl;
};
Copy after login

The first frame printed is the currently executing frame. We can get information about this frame by looking up the current program counter in DWARF:

auto current_func = get_function_from_pc(get_pc());
output_frame(current_func);
Copy after login

Next we need to get the frame pointer and return address of the current function. The frame pointer is stored in the rbp register and the return address is 8 bytes stacked from the frame pointer.

auto frame_pointer = get_register_value(m_pid, reg::rbp);
auto return_address = read_memory(frame_pointer+8);
Copy after login

Now we have all the information we need to expand the stack. I just keep unwinding until the debugger hits main, but you can also choose to stop when the frame pointer is 0x0, which are the functions you call before calling the main function. We will grab the frame pointer and return address from each frame and print out the information.

while (dwarf::at_name(current_func) != "main") {
current_func = get_function_from_pc(return_address);
output_frame(current_func);
frame_pointer = read_memory(frame_pointer);
return_address = read_memory(frame_pointer+8);
}
}
Copy after login

That's it! Here is the entire function:

void debugger::print_backtrace() {
auto output_frame = [frame_number = 0] (auto&& func) mutable {
std::cout << "frame #" << frame_number++ << ": 0x" << dwarf::at_low_pc(func)
<< ' ' << dwarf::at_name(func) << std::endl;
};
auto current_func = get_function_from_pc(get_pc());
output_frame(current_func);
auto frame_pointer = get_register_value(m_pid, reg::rbp);
auto return_address = read_memory(frame_pointer+8);
while (dwarf::at_name(current_func) != "main") {
current_func = get_function_from_pc(return_address);
output_frame(current_func);
frame_pointer = read_memory(frame_pointer);
return_address = read_memory(frame_pointer+8);
}
}
Copy after login
Add command

Of course, we must expose this command to the user.

else if(is_prefix(command, "backtrace")) {
print_backtrace();
}
Copy after login
test

One way to test this functionality is by writing a test program with a bunch of small functions that call each other. Set a few breakpoints, jump close to the code, and make sure your traceback is accurate.

We've come a long way from a program that could only spawn and attach to other programs. The penultimate article in this series will complete the debugger implementation by supporting reading and writing variables. Until then, you can find the code for this post here.

The above is the detailed content of Linux debugger stack expansion!. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: How To Unlock Everything In MyRise
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Unable to log in to mysql as root Unable to log in to mysql as root Apr 08, 2025 pm 04:54 PM

The main reasons why you cannot log in to MySQL as root are permission problems, configuration file errors, password inconsistent, socket file problems, or firewall interception. The solution includes: check whether the bind-address parameter in the configuration file is configured correctly. Check whether the root user permissions have been modified or deleted and reset. Verify that the password is accurate, including case and special characters. Check socket file permission settings and paths. Check that the firewall blocks connections to the MySQL server.

C language conditional compilation: a detailed guide for beginners to practical applications C language conditional compilation: a detailed guide for beginners to practical applications Apr 04, 2025 am 10:48 AM

C language conditional compilation is a mechanism for selectively compiling code blocks based on compile-time conditions. The introductory methods include: using #if and #else directives to select code blocks based on conditions. Commonly used conditional expressions include STDC, _WIN32 and linux. Practical case: Print different messages according to the operating system. Use different data types according to the number of digits of the system. Different header files are supported according to the compiler. Conditional compilation enhances the portability and flexibility of the code, making it adaptable to compiler, operating system, and CPU architecture changes.

【Rust Self-study】Introduction 【Rust Self-study】Introduction Apr 04, 2025 am 08:03 AM

1.0.1 Preface This project (including code and comments) was recorded during my self-taught Rust. There may be inaccurate or unclear statements, please apologize. If you benefit from it, it's even better. 1.0.2 Why is RustRust reliable and efficient? Rust can replace C and C, with similar performance but higher security, and does not require frequent recompilation to check for errors like C and C. The main advantages include: memory security (preventing null pointers from dereferences, dangling pointers, and data contention). Thread-safe (make sure multi-threaded code is safe before execution). Avoid undefined behavior (e.g., array out of bounds, uninitialized variables, or access to freed memory). Rust provides modern language features such as generics

What are the 5 basic components of Linux? What are the 5 basic components of Linux? Apr 06, 2025 am 12:05 AM

The five basic components of Linux are: 1. The kernel, managing hardware resources; 2. The system library, providing functions and services; 3. Shell, the interface for users to interact with the system; 4. The file system, storing and organizing data; 5. Applications, using system resources to implement functions.

How to solve mysql cannot be started How to solve mysql cannot be started Apr 08, 2025 pm 02:21 PM

There are many reasons why MySQL startup fails, and it can be diagnosed by checking the error log. Common causes include port conflicts (check port occupancy and modify configuration), permission issues (check service running user permissions), configuration file errors (check parameter settings), data directory corruption (restore data or rebuild table space), InnoDB table space issues (check ibdata1 files), plug-in loading failure (check error log). When solving problems, you should analyze them based on the error log, find the root cause of the problem, and develop the habit of backing up data regularly to prevent and solve problems.

Where is the C language function library? How to add the C language function library? Where is the C language function library? How to add the C language function library? Apr 03, 2025 pm 11:39 PM

The C language function library is a toolbox containing various functions, which are organized in different library files. Adding a library requires specifying it through the compiler's command line options, for example, the GCC compiler uses the -l option followed by the abbreviation of the library name. If the library file is not under the default search path, you need to use the -L option to specify the library file path. Library can be divided into static libraries and dynamic libraries. Static libraries are directly linked to the program at compile time, while dynamic libraries are loaded at runtime.

Can mysql run on android Can mysql run on android Apr 08, 2025 pm 05:03 PM

MySQL cannot run directly on Android, but it can be implemented indirectly by using the following methods: using the lightweight database SQLite, which is built on the Android system, does not require a separate server, and has a small resource usage, which is very suitable for mobile device applications. Remotely connect to the MySQL server and connect to the MySQL database on the remote server through the network for data reading and writing, but there are disadvantages such as strong network dependencies, security issues and server costs.

Solutions to the errors reported by MySQL on a specific system version Solutions to the errors reported by MySQL on a specific system version Apr 08, 2025 am 11:54 AM

The solution to MySQL installation error is: 1. Carefully check the system environment to ensure that the MySQL dependency library requirements are met. Different operating systems and version requirements are different; 2. Carefully read the error message and take corresponding measures according to prompts (such as missing library files or insufficient permissions), such as installing dependencies or using sudo commands; 3. If necessary, try to install the source code and carefully check the compilation log, but this requires a certain amount of Linux knowledge and experience. The key to ultimately solving the problem is to carefully check the system environment and error information, and refer to the official documents.

See all articles