Home Backend Development Python Tutorial Pandas data processing skills: simple method to modify column names

Pandas data processing skills: simple method to modify column names

Jan 10, 2024 am 08:15 AM
data processing pandas Column name modification

Pandas data processing skills: simple method to modify column names

Pandas data processing skills: simple method of modifying column names

During the data processing process, sometimes we need to modify the column names in the DataFrame to better Reflect the meaning of data or meet specific needs. Pandas provides simple and easy-to-use methods to modify column names. This article will introduce several common methods and provide specific code examples.

Method 1: Use rename()Function

rename()The function can change column names by providing a dictionary or function. The following is an example of using a dictionary:

import pandas as pd

# 创建一个示例DataFrame
data = {'Name': ['Alice', 'Bob', 'Charlie'],
        'Age': [25, 30, 35],
        'Score': [90, 80, 95]}
df = pd.DataFrame(data)

# 使用rename函数修改列名
df.rename(columns={'Name': '姓名', 'Age': '年龄', 'Score': '分数'}, inplace=True)
print(df)
Copy after login

The running result is as follows:

        姓名  年龄  分数
0    Alice  25  90
1      Bob  30  80
2  Charlie  35  95
Copy after login
Copy after login
Copy after login

Method 2: Directly modify the columns attribute

We can also modify it directly DataFrame's columns property to change column names. The following is a sample code:

import pandas as pd

# 创建一个示例DataFrame
data = {'Name': ['Alice', 'Bob', 'Charlie'],
        'Age': [25, 30, 35],
        'Score': [90, 80, 95]}
df = pd.DataFrame(data)

# 直接修改columns属性
df.columns = ['姓名', '年龄', '分数']
print(df)
Copy after login

The running result is the same as the previous example:

        姓名  年龄  分数
0    Alice  25  90
1      Bob  30  80
2  Charlie  35  95
Copy after login
Copy after login
Copy after login

Method 3: Use set_axis()Method

set_axis()The method can modify multiple column names at one time. The following is a sample code:

import pandas as pd

# 创建一个示例DataFrame
data = {'Name': ['Alice', 'Bob', 'Charlie'],
        'Age': [25, 30, 35],
        'Score': [90, 80, 95]}
df = pd.DataFrame(data)

# 使用set_axis方法修改列名
df.set_axis(['姓名', '年龄', '分数'], axis='columns', inplace=True)
print(df)
Copy after login

The result is the same as the previous example:

        姓名  年龄  分数
0    Alice  25  90
1      Bob  30  80
2  Charlie  35  95
Copy after login
Copy after login
Copy after login

Summary:

Through the above example, we can see how to modify the DataFrame column name method. Select the appropriate method to modify according to actual needs. rename()The function is suitable for situations where there are multiple different column names that need to be modified. The column names that need to be modified can be specified through a dictionary or function. Directly modifying the columns attribute is a simple and intuitive method, suitable for situations where only a few column names need to be modified. set_axis()The method is suitable for modifying multiple column names at one time.

I hope the above introduction can help readers master the method of simply modifying column names in Pandas. Different methods can be selected and used according to specific situations, and the flexible use of these methods can better adapt to the needs of data processing.

The above is the detailed content of Pandas data processing skills: simple method to modify column names. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Chat Commands and How to Use Them
1 months ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Solving common pandas installation problems: interpretation and solutions to installation errors Solving common pandas installation problems: interpretation and solutions to installation errors Feb 19, 2024 am 09:19 AM

Pandas installation tutorial: Analysis of common installation errors and their solutions, specific code examples are required Introduction: Pandas is a powerful data analysis tool that is widely used in data cleaning, data processing, and data visualization, so it is highly respected in the field of data science . However, due to environment configuration and dependency issues, you may encounter some difficulties and errors when installing pandas. This article will provide you with a pandas installation tutorial and analyze some common installation errors and their solutions. 1. Install pandas

How to read txt file correctly using pandas How to read txt file correctly using pandas Jan 19, 2024 am 08:39 AM

How to use pandas to read txt files correctly requires specific code examples. Pandas is a widely used Python data analysis library. It can be used to process a variety of data types, including CSV files, Excel files, SQL databases, etc. At the same time, it can also be used to read text files, such as txt files. However, when reading txt files, we sometimes encounter some problems, such as encoding problems, delimiter problems, etc. This article will introduce how to read txt correctly using pandas

Practical tips for reading txt files using pandas Practical tips for reading txt files using pandas Jan 19, 2024 am 09:49 AM

Practical tips for reading txt files using pandas, specific code examples are required. In data analysis and data processing, txt files are a common data format. Using pandas to read txt files allows for fast and convenient data processing. This article will introduce several practical techniques to help you better use pandas to read txt files, along with specific code examples. Reading txt files with delimiters When using pandas to read txt files with delimiters, you can use read_c

Revealing the efficient data deduplication method in Pandas: Tips for quickly removing duplicate data Revealing the efficient data deduplication method in Pandas: Tips for quickly removing duplicate data Jan 24, 2024 am 08:12 AM

The secret of Pandas deduplication method: a fast and efficient way to deduplicate data, which requires specific code examples. In the process of data analysis and processing, duplication in the data is often encountered. Duplicate data may mislead the analysis results, so deduplication is a very important step. Pandas, a powerful data processing library, provides a variety of methods to achieve data deduplication. This article will introduce some commonly used deduplication methods, and attach specific code examples. The most common case of deduplication based on a single column is based on whether the value of a certain column is duplicated.

Pandas usage tutorial: Quick start for reading JSON files Pandas usage tutorial: Quick start for reading JSON files Jan 13, 2024 am 10:15 AM

Quick Start: Pandas method of reading JSON files, specific code examples are required Introduction: In the field of data analysis and data science, Pandas is one of the important Python libraries. It provides rich functions and flexible data structures, and can easily process and analyze various data. In practical applications, we often encounter situations where we need to read JSON files. This article will introduce how to use Pandas to read JSON files, and attach specific code examples. 1. Installation of Pandas

Simple pandas installation tutorial: detailed guidance on how to install pandas on different operating systems Simple pandas installation tutorial: detailed guidance on how to install pandas on different operating systems Feb 21, 2024 pm 06:00 PM

Simple pandas installation tutorial: Detailed guidance on how to install pandas on different operating systems, specific code examples are required. As the demand for data processing and analysis continues to increase, pandas has become one of the preferred tools for many data scientists and analysts. pandas is a powerful data processing and analysis library that can easily process and analyze large amounts of structured data. This article will detail how to install pandas on different operating systems and provide specific code examples. Install on Windows operating system

FAQ for pandas reading txt files FAQ for pandas reading txt files Jan 19, 2024 am 09:19 AM

Pandas is a data analysis tool for Python, especially suitable for cleaning, processing and analyzing data. During the data analysis process, we often need to read data files in various formats, such as Txt files. However, some problems will be encountered during the specific operation. This article will introduce answers to common questions about reading txt files with pandas and provide corresponding code examples. Question 1: How to read txt file? txt files can be read using the read_csv() function of pandas. This is because

How does Golang improve data processing efficiency? How does Golang improve data processing efficiency? May 08, 2024 pm 06:03 PM

Golang improves data processing efficiency through concurrency, efficient memory management, native data structures and rich third-party libraries. Specific advantages include: Parallel processing: Coroutines support the execution of multiple tasks at the same time. Efficient memory management: The garbage collection mechanism automatically manages memory. Efficient data structures: Data structures such as slices, maps, and channels quickly access and process data. Third-party libraries: covering various data processing libraries such as fasthttp and x/text.

See all articles