Illustrated Matplotlib drawing methods: from basic to advanced, specific code examples are required
Introduction:
Matplotlib is a powerful drawing library commonly used for data visualization . Whether it's a simple line chart, or a complex scatter plot or 3D chart, Matplotlib can meet your needs. This article will introduce Matplotlib's drawing methods in detail, from basic to advanced, and provide specific code examples.
1. Installation and import of Matplotlib
2. Draw a simple line chart
The following is a simple line chart example, showing the sales changes of a company in the past 12 months.
import matplotlib.pyplot as plt # 数据 months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'] sales = [100, 120, 150, 130, 140, 160, 180, 170, 190, 200, 210, 220] # 创建图表和画布 plt.figure(figsize=(8, 6)) # 绘制折线图 plt.plot(months, sales, marker='o', linestyle='-', color='blue') # 设置标题和标签 plt.title('Sales Trend') plt.xlabel('Months') plt.ylabel('Sales') # 显示图表 plt.show()
3. Custom chart style
Matplotlib provides a wealth of chart style settings, which can make your chart more personalized and beautiful.
Adjust color and line style
plt.plot(months, sales, marker='o', linestyle='-', color='blue')
You can set the mark style through the marker parameter, the linestyle parameter to set the line style, and the color parameter to set the color.
Set the legend
plt.plot(months, sales, marker='o', linestyle='-', color='blue', label='Sales') plt.legend()
Use the label parameter to set the legend label, and then use the plt.legend() method to display the legend.
Add grid lines
plt.grid(True)
Use the plt.grid(True) method to add grid lines.
4. Draw scatter plots and bar charts
In addition to line charts, Matplotlib also supports drawing scatter plots and bar charts.
import matplotlib.pyplot as plt # 数据 temperature = [15, 19, 22, 18, 25, 28, 30, 29, 24, 20] rainfall = [20, 40, 30, 10, 55, 60, 70, 50, 45, 35] # 创建图表和画布 plt.figure(figsize=(8, 6)) # 绘制散点图 plt.scatter(temperature, rainfall, color='red') # 设置标题和标签 plt.title('Temperature vs Rainfall') plt.xlabel('Temperature (°C)') plt.ylabel('Rainfall (mm)') # 显示图表 plt.show()
import matplotlib.pyplot as plt # 数据 regions = ['North', 'South', 'East', 'West'] sales = [100, 120, 150, 130] # 创建图表和画布 plt.figure(figsize=(8, 6)) # 绘制条形图 plt.bar(regions, sales, color='blue') # 设置标题和标签 plt.title('Sales by Region') plt.xlabel('Region') plt.ylabel('Sales') # 显示图表 plt.show()
5. Draw advanced charts
Matplotlib can also draw more complex charts, such as pie charts and 3D charts.
import matplotlib.pyplot as plt # 数据 products = ['A', 'B', 'C', 'D'] sales = [30, 20, 25, 15] # 创建图表和画布 plt.figure(figsize=(8, 6)) # 绘制饼图 plt.pie(sales, labels=products, autopct='%.1f%%') # 设置标题 plt.title('Sales by Product') # 显示图表 plt.show()
import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # 数据 x = np.linspace(-5, 5, 100) y = np.linspace(-5, 5, 100) X, Y = np.meshgrid(x, y) Z = np.sin(np.sqrt(X**2 + Y**2)) # 创建图表和画布 fig = plt.figure(figsize=(8, 6)) ax = fig.add_subplot(111, projection='3d') # 绘制3D图 ax.plot_surface(X, Y, Z, cmap='viridis') # 设置标题和标签 ax.set_title('3D Surface Plot') ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') # 显示图表 plt.show()
Conclusion:
Through the introduction and examples of this article, we can understand the drawing methods and usage techniques of Matplotlib. Whether it is a simple line chart, or a complex scatter plot and 3D chart, Matplotlib provides a wealth of functions and options to meet different needs for data visualization. I hope this article will be helpful to both beginners and experienced users, so that they can better use Matplotlib for data analysis and display.
The above is the detailed content of From beginner to advanced, illustrating Matplotlib drawing methods. For more information, please follow other related articles on the PHP Chinese website!