Mysql存储过程中使用cursor_MySQL
学生表
CREATE TABLE `t_student` (
`stuNum` int(11) NOT NULL auto_increment,
`stuName` varchar(20) default NULL,
`birthday` date default NULL,
PRIMARY KEY (`stuNum`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
学生分数表
CREATE TABLE `t_stu_score` (
`id` int(11) NOT NULL auto_increment,
`stuNum` int(11) default NULL,
`score` decimal(6,2) default NULL,
PRIMARY KEY (`id`),
KEY `FK_t_stu_score` (`stuNum`),
CONSTRAINT `FK_t_stu_score` FOREIGN KEY (`stuNum`) REFERENCES `t_student` (`stuNum`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
学生详细表
CREATE TABLE `t_stu_detail` (
`id` int(11) NOT NULL auto_increment,
`stuName` varchar(20) default NULL,
`score` decimal(6,2) default NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8
将t_Student和t_stu_score表中满足一定条件的数据插入到t_stu_detail中。
二、过程
DELIMITER &&
CREATE PROCEDURE proc_AddStuDetail( IN p_score DECIMAL(6,2) )
BEGIN
DECLARE vstuNum INT;
DECLARE vstuName VARCHAR(20);
DECLARE vbirthday DATE;
DECLARE vscore DECIMAL(6,2);
DECLARE done INT;
-- 定义游标
DECLARE stuCursor CURSOR
FOR
SELECT stuNum,stuName,birthday FROM t_Student;
-- 定义结束标记
DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = 1;
-- 打开游标
OPEN stuCursor;
-- 循环
stuLoop:LOOP
-- 取游标中的数据
FETCH stuCursor INTO vstuNum,vstuName,vbirthday;
IF done = 1 THEN
LEAVE stuLoop;
END IF;
IF DATE(vbirthday) >= '1990-03-01' THEN
SELECT score INTO vscore FROM t_stu_score WHERE stuNum = vstuNum;
IF vscore >= p_score THEN
INSERT INTO t_stu_detail VALUES(NULL,vstuNum,vscore);
END IF;
END IF;
END LOOP stuLoop;
-- 关闭游标
CLOSE stuCursor;
END
&&
DELIMITER ;
三、调用过程
CALL proc_AddStuDetail(86);

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



The article discusses using MySQL's ALTER TABLE statement to modify tables, including adding/dropping columns, renaming tables/columns, and changing column data types.

InnoDB's full-text search capabilities are very powerful, which can significantly improve database query efficiency and ability to process large amounts of text data. 1) InnoDB implements full-text search through inverted indexing, supporting basic and advanced search queries. 2) Use MATCH and AGAINST keywords to search, support Boolean mode and phrase search. 3) Optimization methods include using word segmentation technology, periodic rebuilding of indexes and adjusting cache size to improve performance and accuracy.

Article discusses configuring SSL/TLS encryption for MySQL, including certificate generation and verification. Main issue is using self-signed certificates' security implications.[Character count: 159]

Article discusses popular MySQL GUI tools like MySQL Workbench and phpMyAdmin, comparing their features and suitability for beginners and advanced users.[159 characters]

Article discusses strategies for handling large datasets in MySQL, including partitioning, sharding, indexing, and query optimization.

The article discusses dropping tables in MySQL using the DROP TABLE statement, emphasizing precautions and risks. It highlights that the action is irreversible without backups, detailing recovery methods and potential production environment hazards.

MySQL supports four index types: B-Tree, Hash, Full-text, and Spatial. 1.B-Tree index is suitable for equal value search, range query and sorting. 2. Hash index is suitable for equal value searches, but does not support range query and sorting. 3. Full-text index is used for full-text search and is suitable for processing large amounts of text data. 4. Spatial index is used for geospatial data query and is suitable for GIS applications.

The article discusses creating indexes on JSON columns in various databases like PostgreSQL, MySQL, and MongoDB to enhance query performance. It explains the syntax and benefits of indexing specific JSON paths, and lists supported database systems.
