Home > Technology peripherals > AI > NVIDIA, Mila, and Caltech jointly release multi-modal molecular structure-text model of LLM combined with drug discovery

NVIDIA, Mila, and Caltech jointly release multi-modal molecular structure-text model of LLM combined with drug discovery

WBOY
Release: 2024-01-14 20:00:05
forward
792 people have browsed it

NVIDIA, Mila, and Caltech jointly release multi-modal molecular structure-text model of LLM combined with drug discovery

Author | Liu Shengchao

Editor | Kaixia

Starting in 2021, the combination of big language and multi-modality has swept the machine learning research community .

With the development of large models and multi-modal applications, can we apply these techniques to drug discovery? And, can these natural language textual descriptions bring new perspectives to this challenging problem? The answer is yes, and we are optimistic about it

Recently, Canada’s Montreal Institute for Learning Algorithms (Mila), NVIDIA Research, University of Illinois at Urbana-Champaign (UIUC), Princeton University and California Institute of Technology The college's research team jointly learns the chemical structure and text description of molecules through comparative learning strategies, and proposes a multi-modal molecular structure-text model MoleculeSTM.

The research is titled "Multi-modal molecule structure–text model for text-based retrieval and editing" and was published in "Nature Machine Intelligence" on December 18, 2023.

NVIDIA, Mila, and Caltech jointly release multi-modal molecular structure-text model of LLM combined with drug discovery

Paper link: https://www.nature.com/articles/s42256-023-00759-6 needs to be rewritten

Among them, Dr. Liu Shengchao is the first author, and Professor Anima Anandkumar of NVIDIA Research is the corresponding author. Nie Weili, Wang Chengpeng, Lu Jiarui, Qiao Zhuoran, Liu Ling, Tang Jian and Xiao Chaowei are co-authors.

This project was conducted by Dr. Liu Shengchao after joining NVIDIA Research in March 2022, under the guidance of Teachers Nie Weili, Teacher Tang Jian, Teacher Xiao Chaowei and Teacher Anima Anandkumar.

Dr. Liu Shengchao said: "Our motivation was to conduct preliminary exploration of LLM and drug discovery, and finally proposed MoleculeSTM."

NVIDIA, Mila, and Caltech jointly release multi-modal molecular structure-text model of LLM combined with drug discovery

For docking The text is designed to guide molecule editing

The core idea of ​​MoleculeSTM is very simple and direct, that is, the description of molecules can be divided into two categories: internal chemical structure and external function description. Here we use a contrastive pre-training method to align and connect these two types of information. The specific diagram is shown in the figure below

NVIDIA, Mila, and Caltech jointly release multi-modal molecular structure-text model of LLM combined with drug discovery

#Illustration: MoleculeSTM flow chart.

This alignment of MoleculeSTM has a very good property: when there are some tasks that are difficult to solve in the chemical space, we can transfer them to the natural language space. And natural language tasks will be relatively easier to solve due to its characteristics. Based on this, we designed a wide variety of downstream tasks to verify its effectiveness. Below we discuss several insights in detail.

Features of Natural Language and Large Language Models

In MoleculeSTM, we pose a problem for the first time. We take advantage of the open vocabulary and combinatorial characteristics of natural language

  • Open vocabulary means that we can express all current human knowledge in natural language, so new knowledge that will appear in the future can also be expressed in modern language. Some language is used to summarize and summarize. For example, if a new protein appears, we hope to describe its function in natural language.
  • Compositionality means that in natural language, a complex concept can be jointly expressed by several simple concepts. This is very helpful for tasks such as multi-attribute editing: it is very difficult to edit molecules to meet multiple properties at the same time in chemical space, but we can express multiple properties very easily in natural language.

In our recent work ChatDrug (https://arxiv.org/abs/2305.18090), we explored the conversational properties between natural language and large language models, which are of interest to Friends can go and take a look

Task design derived from features refers to the design of planning and arranging tasks based on the characteristics of the product or system

For existing language- For image tasks, they can be viewed as art-related tasks, such as generating pictures or text. That is, their results are varied and uncertain. However, scientific discoveries are scientific problems that usually have relatively clear results, such as the generation of small molecules with specific functions. This brings greater challenges in task design

In MoleculeSTM (Appendix B), we proposed two guidelines:

  • The first task we consider is to be able to perform calculations and simulations to obtain results. In the future, wet-lab verification results will be considered, but this is not within the scope of the current work.
  • Secondly, we only consider problems with ambiguous results. Specific examples include making a certain molecule more water-soluble or penetrable. Some problems have clear results, such as adding a certain functional group to a certain position in a molecule. We believe that such tasks are simpler and more straightforward for drug and chemistry experts. So it can be used as a proof-of-concept task in the future, but it will not become the main task target.

From this we designed three broad categories of tasks:

  1. Zero-shot structured text retrieval;
  2. Zero-shot text-based molecule editing ;
  3. Molecular property prediction.

We will focus on the second task in the following sections

The qualitative results of molecular editing are restated as follows:

This The task is to input a molecule and a natural language description (such as additional attributes) at the same time, and then hope to output a new molecule described in a composite language text. This is text-guided lead optimization.

The specific method is to use the already trained molecule generation model and our pre-trained MoleculeSTM to learn the alignment of the two latent spaces (latent space), thereby performing latent space interpolation, and then generate it through decoding target molecule. The process diagram is as follows.

NVIDIA, Mila, and Caltech jointly release multi-modal molecular structure-text model of LLM combined with drug discovery

The content that needs to be rewritten is: a two-stage process diagram of zero-sample text-guided molecule editing

Here we show several groups of molecule editing The qualitative results are restated as follows: (Result details of the remaining downstream tasks can be found in the original paper). We mainly consider four types of molecular editing tasks:

  • Single attribute editing: Editing a single attribute, such as water solubility, penetrability, and the number of hydrogen bond donors and acceptors.
  • Composite attribute editing: Edit multiple attributes at the same time, such as water solubility and the number of hydrogen bond donors.
  • Drug similarity editor: (Appendix D.5) makes the input molecule and the target molecule drug look closer.
  • Neighbor search for patented drugs: For drugs that have been patented, drugs in the process are often reported together. Here we are combining the intermediate drug with the natural language description to see if it can generate the final target drug.
  • binding affinity editor: We selected several ChEMBL assays as targets, with the goal of having higher binding affinity between the input molecules and the targets.

NVIDIA, Mila, and Caltech jointly release multi-modal molecular structure-text model of LLM combined with drug discovery

#Result display: zero-sample text-guided molecule editing. (Note: This is a direct translation of the original sentence into Chinese.)

What is more interesting is the last type of task. We found that MoleculeSTM can indeed perform matching based on the text description of the target protein. Optimization of lead compounds for ligands. (Note: The protein structure information here will only be known after evaluation.)

The above is the detailed content of NVIDIA, Mila, and Caltech jointly release multi-modal molecular structure-text model of LLM combined with drug discovery. For more information, please follow other related articles on the PHP Chinese website!

Related labels:
source:jiqizhixin.com
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template