Home Technology peripherals AI Google uses a large model to train a robot dog to understand vague instructions and is excited to go on a picnic

Google uses a large model to train a robot dog to understand vague instructions and is excited to go on a picnic

Jan 16, 2024 am 11:24 AM
quadruped robot theory interactive system

Simple and effective interaction between humans and four-legged robots is the way to create capable intelligent assistant robots, pointing to a future where technology improves our lives in ways beyond our imagination. For such human-robot interaction systems, the key is to give the quadruped robot the ability to respond to natural language commands.

#Large language models (LLM) have developed rapidly recently and have shown the potential to perform high-level planning. However, it is still difficult for LLM to understand low-level instructions, such as joint angle targets or motor torques, especially for legged robots that are inherently unstable and require high-frequency control signals. Therefore, most existing work assumes that the LLM has been provided with a high-level API that determines the robot's behavior, which fundamentally limits the expressive capabilities of the system.

In the CoRL 2023 paper "SayTap: Language to Quadrupedal Locomotion", Google DeepMind and the University of Tokyo proposed a new method that uses foot contact patterns as connections A bridge between human natural language instructions and motion controllers that output low-level commands.

Google uses a large model to train a robot dog to understand vague instructions and is excited to go on a picnic

  • Paper address: https://arxiv.org/abs/2306.07580
  • Project website: https://saytap.github.io/

The foot contact pattern refers to the foot contact pattern of a quadrupedal agent when it moves. The order and manner in which they are placed on the ground. Based on this, they developed an interactive quadruped robot system that allows users to flexibly develop different movement behaviors. For example, users can use simple language to command the robot to walk, run, jump or perform other actions.

Their contributions include an LLM prompt design, a reward function, and a method that enables the SayTap controller to use feasible contact pattern distributions.

Research shows that the SayTap controller can implement multiple motion modes, and these capabilities can also be transferred to real robot hardware.

SayTap Method

The SayTap method uses a contact pattern template that is a 4 From top to bottom, each row of the matrix gives the foot contact pattern of the left forefoot (FL), right forefoot (FR), left rearfoot (RL), and right rearfoot (RR) respectively. SayTap's control frequency is 50 Hz, which means each 0 or 1 lasts 0.02 seconds. This study defines the desired foot contact pattern as a cyclic sliding window of size L_w and shape 4 X L_w. The sliding window extracts the quadruped grounding flags from the contact pattern template, which indicate whether the robot foot was on the ground or in the air between times t 1 and t L_w. The figure below gives an overview of the SayTap method.

Google uses a large model to train a robot dog to understand vague instructions and is excited to go on a picnic

SayTap method overview

##SayTap introduction The desired foot contact patterns serve as a new interface between natural language user commands and motion controllers. The motion controller is used to perform primary tasks (such as following a specified speed) and to place the robot foot on the ground at specific times so that the achieved foot contact pattern is as close as possible to the desired contact pattern.

To do this, at each time step, the motion controller takes as input the desired foot contact pattern, plus proprioceptive data such as joint position and velocity) and task-related inputs (such as user-specific velocity commands). DeepMind used reinforcement learning to train the motion controller and represented it as a deep neural network. During training of the controller, the researchers used a random generator to sample the desired foot contact patterns and then optimized the policy to output low-level robot actions that achieve the desired foot contact patterns. At test time, LLM is used to translate user commands into foot contact patterns.

Google uses a large model to train a robot dog to understand vague instructions and is excited to go on a picnic

SayTap uses foot contact patterns as a bridge between natural language user commands and low-level control commands. SayTap supports both simple and direct instructions (such as "Slowly jog forward") and vague user commands (such as "Good news, we are going to have a picnic this weekend!"). Through motion controllers based on reinforcement learning, four The foot robot reacts according to the commands.

Research shows that using properly designed prompts, LLM has the ability to accurately map user commands to specific formats foot contact pattern templates, even if the user commands are unstructured or ambiguous. During training, the researchers used a random pattern generator to generate multiple contact pattern templates, which have different pattern lengths T, based on a given step. The foot-to-ground contact ratio of state type G in one cycle enables the motion controller to learn on a wide range of motion pattern distributions and obtain better generalization capabilities. Please refer to the paper for more details.

Experimental results

#Using a simple prompt containing only three common foot contact pattern context samples, LLM can Various human commands are accurately translated into contact patterns and even generalized to situations where there is no explicit specification of how the robot should behave.

SayTap prompt is concise and compact, containing four Components:

(1) General description used to describe the tasks that the LLM should complete;
(2) Gait definition, used Remind LLM to focus on basic knowledge about quadrupedal gaits and their association with emotions;
(3) Output format definition;
(4) Demonstrate examples to let LLM learn in context Situation.

The researchers also set five speeds so that the robot can move forward or backward, fast or slow, or stay still.

Follow simple and direct commands

#The animation below shows an example of SayTap successfully executing a direct and clear command .Although some commands are not included in the three context examples, LLM can still be guided to express the internal knowledge it learned in the pre-training stage. This will use the "gait definition module" in prompt, which is the above The second module in prompt.

Google uses a large model to train a robot dog to understand vague instructions and is excited to go on a picnic

Google uses a large model to train a robot dog to understand vague instructions and is excited to go on a picnic

##Follow unstructured or vague commands

But even more interesting is SayTap’s ability to handle unstructured and ambiguous instructions. It only takes a few hints to link certain gaits to general emotional impressions, such as the robot jumping up and down after hearing something exciting (like "Let's go on a picnic!"). In addition, it can accurately represent scenes. For example, when told that the ground is very hot, the robot will move quickly to keep its feet from touching the ground as little as possible.

Google uses a large model to train a robot dog to understand vague instructions and is excited to go on a picnic

Google uses a large model to train a robot dog to understand vague instructions and is excited to go on a picnic

Google uses a large model to train a robot dog to understand vague instructions and is excited to go on a picnic

##


Summary and future work

SayTap is an interactive system for quadruped robots, It allows users to flexibly develop different movement behaviors. SayTap introduces desired foot contact patterns as an interface between natural language and low-level controllers. The new interface is both straightforward and flexible, and it allows the robot to follow both direct instructions and commands that do not explicitly state how the robot should behave.

Researchers at DeepMind said that a major future research direction is to test whether commands that imply specific feelings can enable LLM to output the desired gait. In the gait definition module of the above results, the researchers provided a sentence that linked happy emotions to the jumping gait. Providing more information might enhance LLM's ability to interpret commands, such as decoding implicit feelings. In experimental evaluations, the link between happy emotions and a bouncing gait allowed the robot to behave energetically while following vague human instructions. Another interesting future research direction is the introduction of multi-modal inputs, such as video and audio. Theoretically, the foot contact patterns translated from these signals are also suitable for the newly proposed workflow here and are expected to open up more interesting use cases.

Original link: https://blog.research.google/2023/08/saytap-language-to-quadrupedal.html

The above is the detailed content of Google uses a large model to train a robot dog to understand vague instructions and is excited to go on a picnic. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Breaking through the boundaries of traditional defect detection, 'Defect Spectrum' achieves ultra-high-precision and rich semantic industrial defect detection for the first time. Breaking through the boundaries of traditional defect detection, 'Defect Spectrum' achieves ultra-high-precision and rich semantic industrial defect detection for the first time. Jul 26, 2024 pm 05:38 PM

In modern manufacturing, accurate defect detection is not only the key to ensuring product quality, but also the core of improving production efficiency. However, existing defect detection datasets often lack the accuracy and semantic richness required for practical applications, resulting in models unable to identify specific defect categories or locations. In order to solve this problem, a top research team composed of Hong Kong University of Science and Technology Guangzhou and Simou Technology innovatively developed the "DefectSpectrum" data set, which provides detailed and semantically rich large-scale annotation of industrial defects. As shown in Table 1, compared with other industrial data sets, the "DefectSpectrum" data set provides the most defect annotations (5438 defect samples) and the most detailed defect classification (125 defect categories

NVIDIA dialogue model ChatQA has evolved to version 2.0, with the context length mentioned at 128K NVIDIA dialogue model ChatQA has evolved to version 2.0, with the context length mentioned at 128K Jul 26, 2024 am 08:40 AM

The open LLM community is an era when a hundred flowers bloom and compete. You can see Llama-3-70B-Instruct, QWen2-72B-Instruct, Nemotron-4-340B-Instruct, Mixtral-8x22BInstruct-v0.1 and many other excellent performers. Model. However, compared with proprietary large models represented by GPT-4-Turbo, open models still have significant gaps in many fields. In addition to general models, some open models that specialize in key areas have been developed, such as DeepSeek-Coder-V2 for programming and mathematics, and InternVL for visual-language tasks.

Training with millions of crystal data to solve the crystallographic phase problem, the deep learning method PhAI is published in Science Training with millions of crystal data to solve the crystallographic phase problem, the deep learning method PhAI is published in Science Aug 08, 2024 pm 09:22 PM

Editor |KX To this day, the structural detail and precision determined by crystallography, from simple metals to large membrane proteins, are unmatched by any other method. However, the biggest challenge, the so-called phase problem, remains retrieving phase information from experimentally determined amplitudes. Researchers at the University of Copenhagen in Denmark have developed a deep learning method called PhAI to solve crystal phase problems. A deep learning neural network trained using millions of artificial crystal structures and their corresponding synthetic diffraction data can generate accurate electron density maps. The study shows that this deep learning-based ab initio structural solution method can solve the phase problem at a resolution of only 2 Angstroms, which is equivalent to only 10% to 20% of the data available at atomic resolution, while traditional ab initio Calculation

Google AI won the IMO Mathematical Olympiad silver medal, the mathematical reasoning model AlphaProof was launched, and reinforcement learning is so back Google AI won the IMO Mathematical Olympiad silver medal, the mathematical reasoning model AlphaProof was launched, and reinforcement learning is so back Jul 26, 2024 pm 02:40 PM

For AI, Mathematical Olympiad is no longer a problem. On Thursday, Google DeepMind's artificial intelligence completed a feat: using AI to solve the real question of this year's International Mathematical Olympiad IMO, and it was just one step away from winning the gold medal. The IMO competition that just ended last week had six questions involving algebra, combinatorics, geometry and number theory. The hybrid AI system proposed by Google got four questions right and scored 28 points, reaching the silver medal level. Earlier this month, UCLA tenured professor Terence Tao had just promoted the AI ​​Mathematical Olympiad (AIMO Progress Award) with a million-dollar prize. Unexpectedly, the level of AI problem solving had improved to this level before July. Do the questions simultaneously on IMO. The most difficult thing to do correctly is IMO, which has the longest history, the largest scale, and the most negative

Nature's point of view: The testing of artificial intelligence in medicine is in chaos. What should be done? Nature's point of view: The testing of artificial intelligence in medicine is in chaos. What should be done? Aug 22, 2024 pm 04:37 PM

Editor | ScienceAI Based on limited clinical data, hundreds of medical algorithms have been approved. Scientists are debating who should test the tools and how best to do so. Devin Singh witnessed a pediatric patient in the emergency room suffer cardiac arrest while waiting for treatment for a long time, which prompted him to explore the application of AI to shorten wait times. Using triage data from SickKids emergency rooms, Singh and colleagues built a series of AI models that provide potential diagnoses and recommend tests. One study showed that these models can speed up doctor visits by 22.3%, speeding up the processing of results by nearly 3 hours per patient requiring a medical test. However, the success of artificial intelligence algorithms in research only verifies this

To provide a new scientific and complex question answering benchmark and evaluation system for large models, UNSW, Argonne, University of Chicago and other institutions jointly launched the SciQAG framework To provide a new scientific and complex question answering benchmark and evaluation system for large models, UNSW, Argonne, University of Chicago and other institutions jointly launched the SciQAG framework Jul 25, 2024 am 06:42 AM

Editor |ScienceAI Question Answering (QA) data set plays a vital role in promoting natural language processing (NLP) research. High-quality QA data sets can not only be used to fine-tune models, but also effectively evaluate the capabilities of large language models (LLM), especially the ability to understand and reason about scientific knowledge. Although there are currently many scientific QA data sets covering medicine, chemistry, biology and other fields, these data sets still have some shortcomings. First, the data form is relatively simple, most of which are multiple-choice questions. They are easy to evaluate, but limit the model's answer selection range and cannot fully test the model's ability to answer scientific questions. In contrast, open-ended Q&A

PRO | Why are large models based on MoE more worthy of attention? PRO | Why are large models based on MoE more worthy of attention? Aug 07, 2024 pm 07:08 PM

In 2023, almost every field of AI is evolving at an unprecedented speed. At the same time, AI is constantly pushing the technological boundaries of key tracks such as embodied intelligence and autonomous driving. Under the multi-modal trend, will the situation of Transformer as the mainstream architecture of AI large models be shaken? Why has exploring large models based on MoE (Mixed of Experts) architecture become a new trend in the industry? Can Large Vision Models (LVM) become a new breakthrough in general vision? ...From the 2023 PRO member newsletter of this site released in the past six months, we have selected 10 special interpretations that provide in-depth analysis of technological trends and industrial changes in the above fields to help you achieve your goals in the new year. be prepared. This interpretation comes from Week50 2023

The accuracy rate reaches 60.8%. Zhejiang University's chemical retrosynthesis prediction model based on Transformer was published in the Nature sub-journal The accuracy rate reaches 60.8%. Zhejiang University's chemical retrosynthesis prediction model based on Transformer was published in the Nature sub-journal Aug 06, 2024 pm 07:34 PM

Editor | KX Retrosynthesis is a critical task in drug discovery and organic synthesis, and AI is increasingly used to speed up the process. Existing AI methods have unsatisfactory performance and limited diversity. In practice, chemical reactions often cause local molecular changes, with considerable overlap between reactants and products. Inspired by this, Hou Tingjun's team at Zhejiang University proposed to redefine single-step retrosynthetic prediction as a molecular string editing task, iteratively refining the target molecular string to generate precursor compounds. And an editing-based retrosynthetic model EditRetro is proposed, which can achieve high-quality and diverse predictions. Extensive experiments show that the model achieves excellent performance on the standard benchmark data set USPTO-50 K, with a top-1 accuracy of 60.8%.

See all articles