Home > Database > Mysql Tutorial > 日志表设计一例分析_MySQL

日志表设计一例分析_MySQL

WBOY
Release: 2016-06-01 13:13:37
Original
994 people have browsed it
关于关系表的设计归根结底有两个方面。
第一,就是完全按照范式理论去设计,一般来说达到第三范式就可以了,或者你可以划分的更细到达更上一层次。比如第四,第五,第六等等。这种设计有自己的可读性很强,但是有一点,在检索数据的时候增加了多张关系表来做关联的开销。
第二,就是在范式理论上适当的做些反范式,有的东西还是不要太剥离的好。(窄表以及宽表) 这点和软件设计中的紧耦合松耦合理论一致。
下面我就以常用的LOG表来做下演示,其中有两种表的实际,一种是窄表,一种是稍微宽一点的表。
窄表:log_ytt
mysql> show create table log_ytt;+-------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------+| Table | Create Table |+-------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------+| log_ytt | CREATE TABLE `log_ytt` (`ids` bigint(20) DEFAULT NULL,`log_time` datetime DEFAULT NULL,KEY `idx_u1` (`ids`,`log_time`)) ENGINE=InnoDB DEFAULT CHARSET=utf8 | +-------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------+1 row in set (0.00 sec)
Copy after login

表记录数

mysql>select * from log_ytt where ids > '4875000001';+------------+---------------------+| ids| log_time|+------------+---------------------+| 7110000001 | 2014-05-20 21:56:42 | | 6300000001 | 2014-05-20 21:56:42 | | 6750000001 | 2014-05-20 21:56:42 | | 5310000001 | 2014-05-20 21:56:42 | | 7200000001 | 2014-05-20 21:56:42 | | 7380000001 | 2014-05-20 21:56:42 | | 5760000001 | 2014-05-20 21:56:42 | | 6930000001 | 2014-05-20 21:56:42 | | 6660000001 | 2014-05-20 21:56:42 | | 5670000001 | 2014-05-20 21:56:42 | | 6210000001 | 2014-05-20 21:56:42 | | 5850000001 | 2014-05-20 21:56:42 | | 6570000001 | 2014-05-20 21:56:42 | | 5580000001 | 2014-05-20 21:56:42 | | 5130000001 | 2014-05-20 21:56:42 | | 7290000001 | 2014-05-20 21:56:42 | | 6390000001 | 2014-05-20 21:56:42 | | 5490000001 | 2014-05-20 21:56:42 | | 5220000001 | 2014-05-20 21:56:42 | | 7560000001 | 2014-05-20 21:56:42 | | 7470000001 | 2014-05-20 21:56:42 | | 7020000001 | 2014-05-20 21:56:42 | | 6840000001 | 2014-05-20 21:56:42 | | 6030000001 | 2014-05-20 21:56:42 | | 6480000001 | 2014-05-20 21:56:42 | | 7650000001 | 2014-05-20 21:56:42 | | 5940000001 | 2014-05-20 21:56:42 | | 6120000001 | 2014-05-20 21:56:42 | | 7740000001 | 2014-05-20 21:56:42 | | 5400000001 | 2014-05-20 21:56:42 | | 5760000001 | 2014-05-21 03:19:07 | | 6840000001 | 2014-05-21 03:19:17 | | 7020000001 | 2014-05-21 03:19:32 | | 7200000001 | 2014-05-21 03:19:45 | | 7110000001 | 2014-05-21 03:19:46 | | 7380000001 | 2014-05-21 03:19:48 | | 5670000001 | 2014-05-21 03:19:58 | | 6930000001 | 2014-05-21 03:19:59 | | 6030000001 | 2014-05-21 03:20:00 | | 5940000001 | 2014-05-21 03:20:00 | | 7290000001 | 2014-05-21 03:20:02 | | 6120000001 | 2014-05-21 03:20:09 | | 5850000001 | 2014-05-21 03:20:18 | | 5580000001 | 2014-05-21 03:20:24 | | 6480000001 | 2014-05-21 03:25:05 | | 6390000001 | 2014-05-21 03:25:37 | | 6210000001 | 2014-05-21 03:25:45 | | 7470000001 | 2014-05-21 03:26:14 | | 6750000001 | 2014-05-21 03:27:17 | | 5310000001 | 2014-05-21 03:27:33 | | 5130000001 | 2014-05-21 03:27:34 | | 6570000001 | 2014-05-21 03:27:34 | | 7560000001 | 2014-05-21 03:27:45 | | 5220000001 | 2014-05-21 03:27:45 | | 5400000001 | 2014-05-21 03:27:53 | | 5490000001 | 2014-05-21 03:27:55 | | 6660000001 | 2014-05-21 03:28:07 | | 6300000001 | 2014-05-21 03:28:13 | | 7740000001 | 2014-05-21 03:28:26 | | 7650000001 | 2014-05-21 03:28:37 | +------------+---------------------+60 rows in set (0.00 sec)
Copy after login
接下来,我们要检索所有IDS的平均时间。 有以下两种方式:
第一, 对表进行了两次访问,并且有GROUP BY 操作,不可取。
mysql> select sec_to_time(avg(timestampdiff(second,a.times,b.times)))as 'running' 	-> from 	-> (select ids,min(log_time) as times from log_ytt where 1 group by ids ) as a,	-> (select ids,max(log_time) as times from log_ytt where 1 group by ids) as b where a.ids = b.ids;+---------------+| running	 |+---------------+| 05:27:08.8333 | +---------------+1 row in set (0.00 sec)
Copy after login
第二,虽然对表进行了最少的访问,但是也有一次GROUP BY 操作。也没办法,表设计如此。
mysql> SELECT SEC_TO_TIME(AVG(times)) AS 'Running' FROM 	-> (	-> SELECT TIMESTAMPDIFF(SECOND,MIN(log_time),MAX(log_time)) AS times FROM log_ytt GROUP BY ids	-> ) AS T;+---------------+| Running	 |+---------------+| 05:27:08.8333 | +---------------+1 row in set (0.00 sec)
Copy after login
宽表:log_ytt_horizontal.
mysql> show create table log_ytt_horizontal;+------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+| Table| Create Table|+------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+| log_ytt_horizontal | CREATE TABLE `log_ytt_horizontal` (`ids` bigint(20) NOT NULL,`start_time` datetime DEFAULT NULL,`end_time` datetime DEFAULT NULL,PRIMARY KEY (`ids`)) ENGINE=InnoDB DEFAULT CHARSET=utf8 | +------------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+1 row in set (0.00 sec)
Copy after login
表记录数:
mysql> select * from log_ytt_horizontal;+------------+---------------------+---------------------+| ids| start_time| end_time|+------------+---------------------+---------------------+| 5130000001 | 2014-05-20 21:56:42 | 2014-05-21 03:27:34 | | 5220000001 | 2014-05-20 21:56:42 | 2014-05-21 03:27:45 | | 5310000001 | 2014-05-20 21:56:42 | 2014-05-21 03:27:33 | | 5400000001 | 2014-05-20 21:56:42 | 2014-05-21 03:27:53 | | 5490000001 | 2014-05-20 21:56:42 | 2014-05-21 03:27:55 | | 5580000001 | 2014-05-20 21:56:42 | 2014-05-21 03:20:24 | | 5670000001 | 2014-05-20 21:56:42 | 2014-05-21 03:19:58 | | 5760000001 | 2014-05-20 21:56:42 | 2014-05-21 03:19:07 | | 5850000001 | 2014-05-20 21:56:42 | 2014-05-21 03:20:18 | | 5940000001 | 2014-05-20 21:56:42 | 2014-05-21 03:20:00 | | 6030000001 | 2014-05-20 21:56:42 | 2014-05-21 03:20:00 | | 6120000001 | 2014-05-20 21:56:42 | 2014-05-21 03:20:09 | | 6210000001 | 2014-05-20 21:56:42 | 2014-05-21 03:25:45 | | 6300000001 | 2014-05-20 21:56:42 | 2014-05-21 03:28:13 | | 6390000001 | 2014-05-20 21:56:42 | 2014-05-21 03:25:37 | | 6480000001 | 2014-05-20 21:56:42 | 2014-05-21 03:25:05 | | 6570000001 | 2014-05-20 21:56:42 | 2014-05-21 03:27:34 | | 6660000001 | 2014-05-20 21:56:42 | 2014-05-21 03:28:07 | | 6750000001 | 2014-05-20 21:56:42 | 2014-05-21 03:27:17 | | 6840000001 | 2014-05-20 21:56:42 | 2014-05-21 03:19:17 | | 6930000001 | 2014-05-20 21:56:42 | 2014-05-21 03:19:59 | | 7020000001 | 2014-05-20 21:56:42 | 2014-05-21 03:19:32 | | 7110000001 | 2014-05-20 21:56:42 | 2014-05-21 03:19:46 | | 7200000001 | 2014-05-20 21:56:42 | 2014-05-21 03:19:45 | | 7290000001 | 2014-05-20 21:56:42 | 2014-05-21 03:20:02 | | 7380000001 | 2014-05-20 21:56:42 | 2014-05-21 03:19:48 | | 7470000001 | 2014-05-20 21:56:42 | 2014-05-21 03:26:14 | | 7560000001 | 2014-05-20 21:56:42 | 2014-05-21 03:27:45 | | 7650000001 | 2014-05-20 21:56:42 | 2014-05-21 03:28:37 | | 7740000001 | 2014-05-20 21:56:42 | 2014-05-21 03:28:26 | +------------+---------------------+---------------------+30 rows in set (0.00 sec)
Copy after login
如果对这种稍微冗余一些的表来进行查询,那么对表的访问以及CPU的资源占用都达到了最低。
mysql> select sec_to_time(avg(timestampdiff(second,start_time,end_time))) as 'Running'from log_ytt_horizontal;+---------------+| Running |+---------------+| 05:27:08.8333 | +---------------+1 row in set (0.00 sec)
Copy after login
source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template