


How to smoothly migrate a project to the latest numpy version
With the continuous development of the field of scientific computing, numpy, as one of the most important scientific computing libraries in Python, is also constantly updated and iterated. Each new version of numpy brings more practical functions and more efficient performance, so we often need to migrate our projects to the latest version of numpy. In this article, we will discuss how to smoothly migrate your project to a latest version of numpy, and we will provide some specific code examples to facilitate readers' understanding.
1. First understand the version changes of numpy
The version changes of numpy are not random. Each new version will bring some new features, fix previous problems, improve performance, etc. . Therefore, before starting the migration, we need to first understand the difference between the numpy version we are using and the target version. This difference may affect our subsequent code modification work.
Currently, the latest version of numpy is 1.20.2. Compared with version 1.16, there are the following major changes:
- Added sparse matrix, Fourier transform and linear Algebra and other new functions.
- Removed some outdated functions or APIs, such as scipy.misc.face function, etc.
- Optimized the performance of certain operations, such as np.in1d, np.isin functions, etc.
2. Analyze your own code and make modifications
After understanding the numpy version changes, we need to analyze our own code to see if it is needed in the new version the place need to change. The main modification points may be as follows:
- Some APIs or functions have been removed in the new version and need to be replaced or eliminated.
- New functions or functions are not available in the old version and need to be added.
- The type or format of some parameters or return values has changed and needs to be modified.
For example, assuming that our project uses the np.info function and calls some scipy.misc.face APIs, then when migrating to version 1.20, we need to do the following Modification:
- Replace np.info function with np.__version__ function to view the currently used numpy version.
- Replace the scipy.misc.face function with the skimage.data.face function. The scipy.misc.face function has been removed in the new version.
Another thing to note is changes in type or format. For example, the return value type of the np.mean function has changed in version 1.20, from a floating point type to an integer type. Therefore, when migrating to version 1.20, if we need to use the return value of the np.mean function for floating point calculations, we will need to perform a cast.
The following is a specific example of modification:
import numpy as np
from skimage.io import imshow
from skimage.data import face
img = face(gray=True)
mean_value = np.mean(img) #The old version returns the floating point type
new_img = img - mean_value.astype('int16') #numpy 1.20 returns the integer type, which needs to be forced. Conversion
imshow(new_img)
3. Perform unit testing
After the migration is completed, we need to perform unit testing to ensure that the migrated project runs normally and does not affect the project other functions. Unit testing can help us quickly discover potential problems so that we can fix them in time.
The following is an example of a unit test:
import numpy as np
def test_numpy_version():
assert np.__version__ == '1.20.2', "numpy版本错误"
def test_scipy_face():
from skimage.data import face from skimage.io import imshow img = face(gray=True) imshow(img)
def test_numpy_mean():
from skimage.data import face from skimage.io import imshow img = face(gray=True) mean_value = np.mean(img) new_img = img - mean_value.astype('int16') assert new_img.dtype == 'int16', "强制类型转换失败" imshow(new_img)
Through the above unit tests, we can confirm whether the migration is smooth and ensure that the numpy-related functions in the project run normally.
Conclusion
This article provides some methods and tips on how to successfully migrate numpy, and gives some specific code examples. I hope it will be helpful to readers. When migrating, we need to first understand the numpy version changes, analyze our own code and make modifications, and conduct unit testing to ensure smooth project migration and stable operation.
The above is the detailed content of How to smoothly migrate a project to the latest numpy version. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Numpy is an important mathematics library in Python. It provides efficient array operations and scientific calculation functions and is widely used in data analysis, machine learning, deep learning and other fields. When using numpy, we often need to check the version number of numpy to determine the functions supported by the current environment. This article will introduce how to quickly check the numpy version and provide specific code examples. Method 1: Use the __version__ attribute that comes with numpy. The numpy module comes with a __

1. Open the WeChat app on the old device, click [Me] in the lower right corner, select the [Settings] function, and click [Chat]. 2. Select [Chat History Migration and Backup], click [Migrate], and select the platform to which you want to migrate the device. 3. Click [Select chats to be migrated], click [Select all] in the lower left corner, or select chat records yourself. 4. After selecting, click [Start] in the lower right corner to log in to this WeChat account using the new device. 5. Then scan the QR code to start migrating chat records. Users only need to wait for the migration to complete.

How to upgrade numpy version: Easy-to-follow tutorial, requires concrete code examples Introduction: NumPy is an important Python library used for scientific computing. It provides a powerful multidimensional array object and a series of related functions that can be used to perform efficient numerical operations. As new versions are released, newer features and bug fixes are constantly available to us. This article will describe how to upgrade your installed NumPy library to get the latest features and resolve known issues. Step 1: Check the current NumPy version at the beginning

Teach you step by step to install NumPy in PyCharm and make full use of its powerful functions. Preface: NumPy is one of the basic libraries for scientific computing in Python. It provides high-performance multi-dimensional array objects and various functions required to perform basic operations on arrays. function. It is an important part of most data science and machine learning projects. This article will introduce you to how to install NumPy in PyCharm, and demonstrate its powerful features through specific code examples. Step 1: Install PyCharm First, we

With the rapid development of fields such as data science, machine learning, and deep learning, Python has become a mainstream language for data analysis and modeling. In Python, NumPy (short for NumericalPython) is a very important library because it provides a set of efficient multi-dimensional array objects and is the basis for many other libraries such as pandas, SciPy and scikit-learn. In the process of using NumPy, you are likely to encounter compatibility issues between different versions, then

The secret of how to quickly uninstall the NumPy library is revealed. Specific code examples are required. NumPy is a powerful Python scientific computing library that is widely used in fields such as data analysis, scientific computing, and machine learning. However, sometimes we may need to uninstall the NumPy library, whether to update the version or for other reasons. This article will introduce some methods to quickly uninstall the NumPy library and provide specific code examples. Method 1: Use pip to uninstall pip is a Python package management tool that can be used to install, upgrade and

Numpy installation guide: One article to solve installation problems, need specific code examples Introduction: Numpy is a powerful scientific computing library in Python. It provides efficient multi-dimensional array objects and tools for operating array data. However, for beginners, installing Numpy may cause some confusion. This article will provide you with a Numpy installation guide to help you quickly solve installation problems. 1. Install the Python environment: Before installing Numpy, you first need to make sure that Py is installed.

Detailed explanation of numpy slicing operation method and practical application guide Introduction: Numpy is one of the most popular scientific computing libraries in Python, providing powerful array operation functions. Among them, slicing operation is one of the commonly used and powerful functions in numpy. This article will introduce the slicing operation method in numpy in detail, and demonstrate the specific use of slicing operation through practical application guide. 1. Introduction to numpy slicing operation method Numpy slicing operation refers to obtaining a subset of an array by specifying an index interval. Its basic form is:
