Home > Backend Development > Python Tutorial > Code logic for implementing mini-batch gradient descent algorithm using Python

Code logic for implementing mini-batch gradient descent algorithm using Python

PHPz
Release: 2024-01-22 12:33:19
forward
1387 people have browsed it

Let theta = model parameters and max_iters = number of epochs. For itr=1,2,3,...,max_iters: For mini_batch(X_mini,y_mini):

Forward pass of batch X_mini:

1. Predict small batches

2. Use the current value of the parameter to calculate the prediction error (J(theta))

Post-transmission: Calculate the gradient (theta)=J(theta)wrt the partial derivative of theta

Update parameters: theta=theta–learning_rate*gradient(theta)

Code process for implementing gradient descent algorithm in Python

Step 1: Import dependencies, generate data for linear regression, and visualize it generated data. Take 8000 data examples, each example has 2 attribute features. These data samples are further divided into training set (X_train, y_train) and test set (X_test, y_test), with 7200 and 800 samples respectively.

import numpy as np
import matplotlib.pyplot as plt

mean=np.array([5.0,6.0])
cov=np.array([[1.0,0.95],[0.95,1.2]])
data=np.random.multivariate_normal(mean,cov,8000)

plt.scatter(data[:500,0],data[:500,1],marker='.')
plt.show()
data=np.hstack((np.ones((data.shape[0],1)),data))
split_factor=0.90
split=int(split_factor*data.shape[0])
X_train=data[:split,:-1]
y_train=data[:split,-1].reshape((-1,1))
X_test=data[split:,:-1]
y_test=data[split:,-1].reshape((-1,1))

print(& quot Number of examples in training set= % d & quot % (X_train.shape[0]))
print(& quot Number of examples in testing set= % d & quot % (X_test.shape[0]))
Copy after login
小批量梯度下降算法逻辑 Python实现梯度下降算法的代码流程

Number of examples in the training set = 7200 Number of examples in the test set = 800

Step 2:

Code to implement linear regression using mini-batch gradient descent . gradientDescent() is the main driving function, and other functions are auxiliary functions:

Prediction-hypothesis()

Calculate gradient-gradient()

Calculate error- —cost()

Create mini-batches —create_mini_batches()

Driver function initializes parameters, calculates the optimal parameter set for the model, and returns these parameters along with a list containing parameter updates error history.

def hypothesis(X,theta):
    return np.dot(X,theta)

def gradient(X,y,theta):
    h=hypothesis(X,theta)
    grad=np.dot(X.transpose(),(h-y))
    return grad

def cost(X,y,theta):
    h=hypothesis(X,theta)
    J=np.dot((h-y).transpose(),(h-y))
    J/=2
    return J[0]

def create_mini_batches(X,y,batch_size):
    mini_batches=[]
    data=np.hstack((X,y))
    np.random.shuffle(data)
    n_minibatches=data.shape[0]//batch_size
    i=0
    for i in range(n_minibatches+1):
        mini_batch=data[i*batch_size:(i+1)*batch_size,:]
        X_mini=mini_batch[:,:-1]
        Y_mini=mini_batch[:,-1].reshape((-1,1))
        mini_batches.append((X_mini,Y_mini))
    if data.shape[0]%batch_size!=0:
       mini_batch=data[i*batch_size:data.shape[0]]
       X_mini=mini_batch[:,:-1]
       Y_mini=mini_batch[:,-1].reshape((-1,1))
       mini_batches.append((X_mini,Y_mini))
    return mini_batches

def gradientDescent(X,y,learning_rate=0.001,batch_size=32):
    theta=np.zeros((X.shape[1],1))
    error_list=[]
    max_iters=3
    for itr in range(max_iters):
        mini_batches=create_mini_batches(X,y,batch_size)
        for mini_batch in mini_batches:
            X_mini,y_mini=mini_batch
            theta=theta-learning_rate*gradient(X_mini,y_mini,theta)
            error_list.append(cost(X_mini,y_mini,theta))
    return theta,error_list
Copy after login

Call the gradientDescent() function to calculate the model parameters (theta) and visualize the changes in the error function.

theta,error_list=gradientDescent(X_train,y_train)
print("Bias=",theta[0])
print("Coefficients=",theta[1:])

plt.plot(error_list)
plt.xlabel("Number of iterations")
plt.ylabel("Cost")
plt.show()
Copy after login

Deviation=[0.81830471]Coefficient=[[1.04586595]]

小批量梯度下降算法逻辑 Python实现梯度下降算法的代码流程

Step 3: Predict the test set and calculate the average absolute error in the prediction.

y_pred=hypothesis(X_test,theta)
plt.scatter(X_test[:,1],y_test[:,],marker='.')
plt.plot(X_test[:,1],y_pred,color='orange')
plt.show()

error=np.sum(np.abs(y_test-y_pred)/y_test.shape[0])
print(& quot Mean absolute error=&quot,error)
Copy after login
小批量梯度下降算法逻辑 Python实现梯度下降算法的代码流程

Mean absolute error=0.4366644295854125

The orange line represents the final hypothesis function: theta[0] theta[1]*X_test[:,1] theta[2]*X_test[ :,2]=0

The above is the detailed content of Code logic for implementing mini-batch gradient descent algorithm using Python. For more information, please follow other related articles on the PHP Chinese website!

Related labels:
source:163.com
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template