Table of Contents
Python implements B-tree deletion operation
Home Database Mysql Tutorial Use Python to write the deletion operation code of B+ tree

Use Python to write the deletion operation code of B+ tree

Jan 22, 2024 pm 12:42 PM
The concept of b-tree

B The tree deletion operation requires first finding the location of the deleted node, and then determining the number of keys of the node.

If the number of keys in the node exceeds the minimum number, just delete it directly.

As shown below, delete "40":

Use Python to write the deletion operation code of B+ tree

If there is an exact minimum number of keys in the node, deletion requires borrowing from the sibling node and adding the intermediate key of the sibling node to parent node. As shown below, delete "5":

Use Python to write the deletion operation code of B+ tree

Delete the content node. If the number of keys in the node exceeds the minimum number, just delete it from the leaf node the key and delete the key from the internal node. Fill empty spaces in internal nodes with inorder successors. As shown below, delete "45":

Use Python to write the deletion operation code of B+ tree

Delete the content node. If there is the exact minimum number of keys in the node, delete the key and directly The sibling borrows a key and fills the empty space in the index with the borrowed key. As shown below, delete "35":

Use Python to write the deletion operation code of B+ tree

Delete the content node and generate a blank space above the parent node. After deleting a key, merge the empty space with its siblings, filling the empty space in the parent node with the inorder successor. As shown below, delete "25":

Use Python to write the deletion operation code of B+ tree

The deletion operation that causes the tree height to shrink, as shown below, delete "55":

Use Python to write the deletion operation code of B+ tree

Python implements B-tree deletion operation

import math
# 创建节点
class Node:
    def __init__(self, order):
        self.order = order
        self.values = []
        self.keys = []
        self.nextKey = None
        self.parent = None
        self.check_leaf = False

# 插入叶子
    def insert_at_leaf(self, leaf, value, key):
        if (self.values):
            temp1 = self.values
            for i in range(len(temp1)):
                if (value == temp1[i]):
                    self.keys[i].append(key)
                    break
                elif (value < temp1[i]):
                    self.values = self.values[:i] + [value] + self.values[i:]
                    self.keys = self.keys[:i] + [[key]] + self.keys[i:]
                    break
                elif (i + 1 == len(temp1)):
                    self.values.append(value)
                    self.keys.append([key])
                    break
        else:
            self.values = [value]
            self.keys = [[key]]


# B+树
class BplusTree:
    def __init__(self, order):
        self.root = Node(order)
        self.root.check_leaf = True

    # 插入节点
    def insert(self, value, key):
        value = str(value)
        old_node = self.search(value)
        old_node.insert_at_leaf(old_node, value, key)

        if (len(old_node.values) == old_node.order):
            node1 = Node(old_node.order)
            node1.check_leaf = True
            node1.parent = old_node.parent
            mid = int(math.ceil(old_node.order / 2)) - 1
            node1.values = old_node.values[mid + 1:]
            node1.keys = old_node.keys[mid + 1:]
            node1.nextKey = old_node.nextKey
            old_node.values = old_node.values[:mid + 1]
            old_node.keys = old_node.keys[:mid + 1]
            old_node.nextKey = node1
            self.insert_in_parent(old_node, node1.values[0], node1)

    def search(self, value):
        current_node = self.root
        while(current_node.check_leaf == False):
            temp2 = current_node.values
            for i in range(len(temp2)):
                if (value == temp2[i]):
                    current_node = current_node.keys[i + 1]
                    break
                elif (value < temp2[i]):
                    current_node = current_node.keys[i]
                    break
                elif (i + 1 == len(current_node.values)):
                    current_node = current_node.keys[i + 1]
                    break
        return current_node

    # 查找节点
    def find(self, value, key):
        l = self.search(value)
        for i, item in enumerate(l.values):
            if item == value:
                if key in l.keys[i]:
                    return True
                else:
                    return False
        return False

    # 在父级插入
    def insert_in_parent(self, n, value, ndash):
        if (self.root == n):
            rootNode = Node(n.order)
            rootNode.values = [value]
            rootNode.keys = [n, ndash]
            self.root = rootNode
            n.parent = rootNode
            ndash.parent = rootNode
            return

        parentNode = n.parent
        temp3 = parentNode.keys
        for i in range(len(temp3)):
            if (temp3[i] == n):
                parentNode.values = parentNode.values[:i] + \
                    [value] + parentNode.values[i:]
                parentNode.keys = parentNode.keys[:i +
                                                  1] + [ndash] + parentNode.keys[i + 1:]
                if (len(parentNode.keys) > parentNode.order):
                    parentdash = Node(parentNode.order)
                    parentdash.parent = parentNode.parent
                    mid = int(math.ceil(parentNode.order / 2)) - 1
                    parentdash.values = parentNode.values[mid + 1:]
                    parentdash.keys = parentNode.keys[mid + 1:]
                    value_ = parentNode.values[mid]
                    if (mid == 0):
                        parentNode.values = parentNode.values[:mid + 1]
                    else:
                        parentNode.values = parentNode.values[:mid]
                    parentNode.keys = parentNode.keys[:mid + 1]
                    for j in parentNode.keys:
                        j.parent = parentNode
                    for j in parentdash.keys:
                        j.parent = parentdash
                    self.insert_in_parent(parentNode, value_, parentdash)

    # 删除节点
    def delete(self, value, key):
        node_ = self.search(value)

        temp = 0
        for i, item in enumerate(node_.values):
            if item == value:
                temp = 1

                if key in node_.keys[i]:
                    if len(node_.keys[i]) > 1:
                        node_.keys[i].pop(node_.keys[i].index(key))
                    elif node_ == self.root:
                        node_.values.pop(i)
                        node_.keys.pop(i)
                    else:
                        node_.keys[i].pop(node_.keys[i].index(key))
                        del node_.keys[i]
                        node_.values.pop(node_.values.index(value))
                        self.deleteEntry(node_, value, key)
                else:
                    print("Value not in Key")
                    return
        if temp == 0:
            print("Value not in Tree")
            return

    # 删除条目
    def deleteEntry(self, node_, value, key):

        if not node_.check_leaf:
            for i, item in enumerate(node_.keys):
                if item == key:
                    node_.keys.pop(i)
                    break
            for i, item in enumerate(node_.values):
                if item == value:
                    node_.values.pop(i)
                    break

        if self.root == node_ and len(node_.keys) == 1:
            self.root = node_.keys[0]
            node_.keys[0].parent = None
            del node_
            return
        elif (len(node_.keys) < int(math.ceil(node_.order / 2)) and node_.check_leaf == False) or (len(node_.values) < int(math.ceil((node_.order - 1) / 2)) and node_.check_leaf == True):

            is_predecessor = 0
            parentNode = node_.parent
            PrevNode = -1
            NextNode = -1
            PrevK = -1
            PostK = -1
            for i, item in enumerate(parentNode.keys):

                if item == node_:
                    if i > 0:
                        PrevNode = parentNode.keys[i - 1]
                        PrevK = parentNode.values[i - 1]

                    if i < len(parentNode.keys) - 1:
                        NextNode = parentNode.keys[i + 1]
                        PostK = parentNode.values[i]

            if PrevNode == -1:
                ndash = NextNode
                value_ = PostK
            elif NextNode == -1:
                is_predecessor = 1
                ndash = PrevNode
                value_ = PrevK
            else:
                if len(node_.values) + len(NextNode.values) < node_.order:
                    ndash = NextNode
                    value_ = PostK
                else:
                    is_predecessor = 1
                    ndash = PrevNode
                    value_ = PrevK

            if len(node_.values) + len(ndash.values) < node_.order:
                if is_predecessor == 0:
                    node_, ndash = ndash, node_
                ndash.keys += node_.keys
                if not node_.check_leaf:
                    ndash.values.append(value_)
                else:
                    ndash.nextKey = node_.nextKey
                ndash.values += node_.values

                if not ndash.check_leaf:
                    for j in ndash.keys:
                        j.parent = ndash

                self.deleteEntry(node_.parent, value_, node_)
                del node_
            else:
                if is_predecessor == 1:
                    if not node_.check_leaf:
                        ndashpm = ndash.keys.pop(-1)
                        ndashkm_1 = ndash.values.pop(-1)
                        node_.keys = [ndashpm] + node_.keys
                        node_.values = [value_] + node_.values
                        parentNode = node_.parent
                        for i, item in enumerate(parentNode.values):
                            if item == value_:
                                p.values[i] = ndashkm_1
                                break
                    else:
                        ndashpm = ndash.keys.pop(-1)
                        ndashkm = ndash.values.pop(-1)
                        node_.keys = [ndashpm] + node_.keys
                        node_.values = [ndashkm] + node_.values
                        parentNode = node_.parent
                        for i, item in enumerate(p.values):
                            if item == value_:
                                parentNode.values[i] = ndashkm
                                break
                else:
                    if not node_.check_leaf:
                        ndashp0 = ndash.keys.pop(0)
                        ndashk0 = ndash.values.pop(0)
                        node_.keys = node_.keys + [ndashp0]
                        node_.values = node_.values + [value_]
                        parentNode = node_.parent
                        for i, item in enumerate(parentNode.values):
                            if item == value_:
                                parentNode.values[i] = ndashk0
                                break
                    else:
                        ndashp0 = ndash.keys.pop(0)
                        ndashk0 = ndash.values.pop(0)
                        node_.keys = node_.keys + [ndashp0]
                        node_.values = node_.values + [ndashk0]
                        parentNode = node_.parent
                        for i, item in enumerate(parentNode.values):
                            if item == value_:
                                parentNode.values[i] = ndash.values[0]
                                break

                if not ndash.check_leaf:
                    for j in ndash.keys:
                        j.parent = ndash
                if not node_.check_leaf:
                    for j in node_.keys:
                        j.parent = node_
                if not parentNode.check_leaf:
                    for j in parentNode.keys:
                        j.parent = parentNode


# 输出B+树
def printTree(tree):
    lst = [tree.root]
    level = [0]
    leaf = None
    flag = 0
    lev_leaf = 0

    node1 = Node(str(level[0]) + str(tree.root.values))

    while (len(lst) != 0):
        x = lst.pop(0)
        lev = level.pop(0)
        if (x.check_leaf == False):
            for i, item in enumerate(x.keys):
                print(item.values)
        else:
            for i, item in enumerate(x.keys):
                print(item.values)
            if (flag == 0):
                lev_leaf = lev
                leaf = x
                flag = 1

record_len = 3
bplustree = BplusTree(record_len)
bplustree.insert(&#x27;5&#x27;, &#x27;33&#x27;)
bplustree.insert(&#x27;15&#x27;, &#x27;21&#x27;)
bplustree.insert(&#x27;25&#x27;, &#x27;31&#x27;)
bplustree.insert(&#x27;35&#x27;, &#x27;41&#x27;)
bplustree.insert(&#x27;45&#x27;, &#x27;10&#x27;)

printTree(bplustree)

if(bplustree.find(&#x27;5&#x27;, &#x27;34&#x27;)):
    print("Found")
else:
    print("Not found")
Copy after login

The above is the detailed content of Use Python to write the deletion operation code of B+ tree. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Explain InnoDB Full-Text Search capabilities. Explain InnoDB Full-Text Search capabilities. Apr 02, 2025 pm 06:09 PM

InnoDB's full-text search capabilities are very powerful, which can significantly improve database query efficiency and ability to process large amounts of text data. 1) InnoDB implements full-text search through inverted indexing, supporting basic and advanced search queries. 2) Use MATCH and AGAINST keywords to search, support Boolean mode and phrase search. 3) Optimization methods include using word segmentation technology, periodic rebuilding of indexes and adjusting cache size to improve performance and accuracy.

How do you alter a table in MySQL using the ALTER TABLE statement? How do you alter a table in MySQL using the ALTER TABLE statement? Mar 19, 2025 pm 03:51 PM

The article discusses using MySQL's ALTER TABLE statement to modify tables, including adding/dropping columns, renaming tables/columns, and changing column data types.

When might a full table scan be faster than using an index in MySQL? When might a full table scan be faster than using an index in MySQL? Apr 09, 2025 am 12:05 AM

Full table scanning may be faster in MySQL than using indexes. Specific cases include: 1) the data volume is small; 2) when the query returns a large amount of data; 3) when the index column is not highly selective; 4) when the complex query. By analyzing query plans, optimizing indexes, avoiding over-index and regularly maintaining tables, you can make the best choices in practical applications.

Can I install mysql on Windows 7 Can I install mysql on Windows 7 Apr 08, 2025 pm 03:21 PM

Yes, MySQL can be installed on Windows 7, and although Microsoft has stopped supporting Windows 7, MySQL is still compatible with it. However, the following points should be noted during the installation process: Download the MySQL installer for Windows. Select the appropriate version of MySQL (community or enterprise). Select the appropriate installation directory and character set during the installation process. Set the root user password and keep it properly. Connect to the database for testing. Note the compatibility and security issues on Windows 7, and it is recommended to upgrade to a supported operating system.

Difference between clustered index and non-clustered index (secondary index) in InnoDB. Difference between clustered index and non-clustered index (secondary index) in InnoDB. Apr 02, 2025 pm 06:25 PM

The difference between clustered index and non-clustered index is: 1. Clustered index stores data rows in the index structure, which is suitable for querying by primary key and range. 2. The non-clustered index stores index key values ​​and pointers to data rows, and is suitable for non-primary key column queries.

What are some popular MySQL GUI tools (e.g., MySQL Workbench, phpMyAdmin)? What are some popular MySQL GUI tools (e.g., MySQL Workbench, phpMyAdmin)? Mar 21, 2025 pm 06:28 PM

Article discusses popular MySQL GUI tools like MySQL Workbench and phpMyAdmin, comparing their features and suitability for beginners and advanced users.[159 characters]

How do you handle large datasets in MySQL? How do you handle large datasets in MySQL? Mar 21, 2025 pm 12:15 PM

Article discusses strategies for handling large datasets in MySQL, including partitioning, sharding, indexing, and query optimization.

How do you drop a table in MySQL using the DROP TABLE statement? How do you drop a table in MySQL using the DROP TABLE statement? Mar 19, 2025 pm 03:52 PM

The article discusses dropping tables in MySQL using the DROP TABLE statement, emphasizing precautions and risks. It highlights that the action is irreversible without backups, detailing recovery methods and potential production environment hazards.

See all articles