Table of Contents
1. Technical principles
2. Example description
3. Code Implementation
Home Technology peripherals AI Example code for image style transfer using convolutional neural networks

Example code for image style transfer using convolutional neural networks

Jan 22, 2024 pm 01:30 PM
Image Processing feature engineering Artificial neural networks

Example code for image style transfer using convolutional neural networks

Image style transfer based on convolutional neural network is a technology that combines the content and style of an image to generate a new image. It utilizes a convolutional neural network (CNN) model to convert images into style feature vectors. This article will discuss this technology from the following three aspects:

1. Technical principles

Image style transfer based on convolutional neural network The implementation relies on two key concepts: content representation and style representation. Content representation refers to the abstract representation of objects and objects in an image, while style representation refers to the abstract representation of textures and colors in an image. In a convolutional neural network, we generate a new image by combining content representation and style representation to preserve the content of the original image and have the style of the new image.

To achieve this goal, we can use an algorithm called "Neural Style Transfer". The algorithm utilizes an already trained convolutional neural network to extract the content and style representation of the image. Specifically, we input an image into the network and extract the content representation of the image through the middle layer of the network, and use the last layer of the network to extract the style representation of the image. We can then generate a completely new image by minimizing the differences between the content and style representation of the original image and the target image. This way we can combine the content of one image with the style of another to create a unique work of art. This algorithm has achieved great success in the field of image processing and is widely used in various applications, such as image editing and artistic creation.

2. Example description

The following is an example of image style transfer based on convolutional neural network. Suppose we have a photo and a picture of a work of art. We hope to use the operation of a convolutional neural network to fuse the content and style of the two pictures to generate a picture that retains the content of the original photo and has the characteristics of the work of art. New pictures in style.

We can use pre-trained convolutional neural networks to extract the content representation and style representation of these two images. Then, a new image is generated by minimizing the distance between the original photo and the content representation of the target image and the style representation of the target image.

3. Code Implementation

The following is a code implementation example based on Python and Keras framework. The code uses the pre-trained VGG19 convolutional neural network to extract the content representation and style representation of the image, and uses gradient descent to minimize the distance between the original image and the target image to generate a new image.

import numpy as np
import tensorflow as tf
from tensorflow.keras.applications import VGG19
from tensorflow.keras.preprocessing.image import load_img, img_to_array

# 加载图像
content_img = load_img("content.jpg", target_size=(224, 224))
style_img = load_img("style.jpg", target_size=(224, 224))

# 将图像转换成数组
content_array = img_to_array(content_img)
style_array = img_to_array(style_img)

# 将数组转换成张量
content_tensor = tf.keras.backend.variable(content_array)
style_tensor = tf.keras.backend.variable(style_array)
generated_tensor = tf.keras.backend.placeholder((1, 224, 224,3))

# 创建预训练的VGG19模型
model = VGG19(include_top=False, weights='imagenet')

# 定义内容损失函数
def content_loss(content, generated):
    return tf.reduce_sum(tf.square(content - generated))

# 定义风格损失函数
def gram_matrix(x):
    features = tf.keras.backend.batch_flatten(tf.keras.backend.permute_dimensions(x, (2, 0, 1)))
    gram = tf.matmul(features, tf.transpose(features))
    return gram

def style_loss(style, generated):
    S = gram_matrix(style)
    G = gram_matrix(generated)
    channels = 3
    size = 224 * 224
    return tf.reduce_sum(tf.square(S - G)) / (4.0 * (channels ** 2) * (size ** 2))

# 定义总损失函数
def total_loss(content, style, generated, alpha=0.5, beta=0.5):
    return alpha * content_loss(content, generated) + beta * style_loss(style, generated)

# 定义优化器和超参数
optimizer = tf.keras.optimizers.Adam(lr=2.0)
alpha = 0.5
beta = 0.5
epochs = 10

# 进行训练
for i in range(epochs):
    with tf.GradientTape() as tape:
        loss = total_loss(content_tensor, style_tensor, generated_tensor, alpha, beta)
    grads = tape.gradient(loss, generated_tensor)
    optimizer.apply_gradients([(grads, generated_tensor)])
    generated_tensor.assign(tf.clip_by_value(generated_tensor, 0.0, 255.0))

# 将张量转换成数组
generated_array = generated_tensor.numpy()
generated_array = generated_array.reshape((224, 224, 3))

# 将数组转换成图像
generated_img = np.clip(generated_array, 0.0, 255.0).astype('uint8')
generated_img = Image.fromarray(generated_img)

# 显示结果
generated_img.show()
Copy after login

In the above code, we use the pre-trained VGG19 model to extract the feature vector of the image, and define the content loss function and style loss function to measure the distance between the generated image and the target image. Then, we define a total loss function to calculate the trade-off between content loss and style loss, and use the Adam optimizer to minimize the total loss function. During training, we use gradient descent to update the generated images and limit them between 0 and 255 using the clip_by_value function. Finally, we convert the generated image back to array and image format and display the result.

The above is the detailed content of Example code for image style transfer using convolutional neural networks. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: How To Unlock Everything In MyRise
1 months ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How is Wasserstein distance used in image processing tasks? How is Wasserstein distance used in image processing tasks? Jan 23, 2024 am 10:39 AM

Wasserstein distance, also known as EarthMover's Distance (EMD), is a metric used to measure the difference between two probability distributions. Compared with traditional KL divergence or JS divergence, Wasserstein distance takes into account the structural information between distributions and therefore exhibits better performance in many image processing tasks. By calculating the minimum transportation cost between two distributions, Wasserstein distance is able to measure the minimum amount of work required to transform one distribution into another. This metric is able to capture the geometric differences between distributions, thereby playing an important role in tasks such as image generation and style transfer. Therefore, the Wasserstein distance becomes the concept

How to use AI technology to restore old photos (with examples and code analysis) How to use AI technology to restore old photos (with examples and code analysis) Jan 24, 2024 pm 09:57 PM

Old photo restoration is a method of using artificial intelligence technology to repair, enhance and improve old photos. Using computer vision and machine learning algorithms, the technology can automatically identify and repair damage and flaws in old photos, making them look clearer, more natural and more realistic. The technical principles of old photo restoration mainly include the following aspects: 1. Image denoising and enhancement. When restoring old photos, they need to be denoised and enhanced first. Image processing algorithms and filters, such as mean filtering, Gaussian filtering, bilateral filtering, etc., can be used to solve noise and color spots problems, thereby improving the quality of photos. 2. Image restoration and repair In old photos, there may be some defects and damage, such as scratches, cracks, fading, etc. These problems can be solved by image restoration and repair algorithms

A case study of using bidirectional LSTM model for text classification A case study of using bidirectional LSTM model for text classification Jan 24, 2024 am 10:36 AM

The bidirectional LSTM model is a neural network used for text classification. Below is a simple example demonstrating how to use bidirectional LSTM for text classification tasks. First, we need to import the required libraries and modules: importosimportnumpyasnpfromkeras.preprocessing.textimportTokenizerfromkeras.preprocessing.sequenceimportpad_sequencesfromkeras.modelsimportSequentialfromkeras.layersimportDense,Em

Image denoising using convolutional neural networks Image denoising using convolutional neural networks Jan 23, 2024 pm 11:48 PM

Convolutional neural networks perform well in image denoising tasks. It utilizes the learned filters to filter the noise and thereby restore the original image. This article introduces in detail the image denoising method based on convolutional neural network. 1. Overview of Convolutional Neural Network Convolutional neural network is a deep learning algorithm that uses a combination of multiple convolutional layers, pooling layers and fully connected layers to learn and classify image features. In the convolutional layer, the local features of the image are extracted through convolution operations, thereby capturing the spatial correlation in the image. The pooling layer reduces the amount of calculation by reducing the feature dimension and retains the main features. The fully connected layer is responsible for mapping learned features and labels to implement image classification or other tasks. The design of this network structure makes convolutional neural networks useful in image processing and recognition.

Twin Neural Network: Principle and Application Analysis Twin Neural Network: Principle and Application Analysis Jan 24, 2024 pm 04:18 PM

Siamese Neural Network is a unique artificial neural network structure. It consists of two identical neural networks that share the same parameters and weights. At the same time, the two networks also share the same input data. This design was inspired by twins, as the two neural networks are structurally identical. The principle of Siamese neural network is to complete specific tasks, such as image matching, text matching and face recognition, by comparing the similarity or distance between two input data. During training, the network attempts to map similar data to adjacent regions and dissimilar data to distant regions. In this way, the network can learn how to classify or match different data to achieve corresponding

Steps to write a simple neural network using Rust Steps to write a simple neural network using Rust Jan 23, 2024 am 10:45 AM

Rust is a systems-level programming language focused on safety, performance, and concurrency. It aims to provide a safe and reliable programming language suitable for scenarios such as operating systems, network applications, and embedded systems. Rust's security comes primarily from two aspects: the ownership system and the borrow checker. The ownership system enables the compiler to check code for memory errors at compile time, thus avoiding common memory safety issues. By forcing checking of variable ownership transfers at compile time, Rust ensures that memory resources are properly managed and released. The borrow checker analyzes the life cycle of the variable to ensure that the same variable will not be accessed by multiple threads at the same time, thereby avoiding common concurrency security issues. By combining these two mechanisms, Rust is able to provide

causal convolutional neural network causal convolutional neural network Jan 24, 2024 pm 12:42 PM

Causal convolutional neural network is a special convolutional neural network designed for causality problems in time series data. Compared with conventional convolutional neural networks, causal convolutional neural networks have unique advantages in retaining the causal relationship of time series and are widely used in the prediction and analysis of time series data. The core idea of ​​causal convolutional neural network is to introduce causality in the convolution operation. Traditional convolutional neural networks can simultaneously perceive data before and after the current time point, but in time series prediction, this may lead to information leakage problems. Because the prediction results at the current time point will be affected by the data at future time points. The causal convolutional neural network solves this problem. It can only perceive the current time point and previous data, but cannot perceive future data.

Why Transformer replaced CNN in computer vision Why Transformer replaced CNN in computer vision Jan 24, 2024 pm 09:24 PM

Transformer and CNN are commonly used neural network models in deep learning, and their design ideas and application scenarios are different. Transformer is suitable for sequence data tasks such as natural language processing, while CNN is mainly used for spatial data tasks such as image processing. They have unique advantages in different scenarios and tasks. Transformer is a neural network model for processing sequence data, which was originally proposed to solve machine translation problems. Its core is the self-attention mechanism, which captures long-distance dependencies by calculating the relationship between various positions in the input sequence, thereby better processing sequence data. Transformer model is solved by the encoder

See all articles