Autoregressive properties of language models
Autoregressive language model is a natural language processing model based on statistical probability. It generates continuous text sequences by leveraging previous word sequences to predict the probability distribution of the next word. This model is very useful in natural language processing and is widely used in language generation, machine translation, speech recognition and other fields. By analyzing historical data, autoregressive language models are able to understand the laws and structure of language to generate text with coherence and semantic accuracy. It can not only be used to generate text, but also to predict the next word, providing useful information for subsequent text processing tasks. Therefore, autoregressive language models are an important and practical technique in natural language processing.
1. The concept of autoregressive model
The autoregressive model is a model that uses previous observations to predict future observations. In natural language processing, autoregressive models can be used to predict the probability of the next word to generate a continuous sequence of text. The model is based on the Markov assumption that the current state is only related to a limited number of previous states.
2. The principle of autoregressive language model
The autoregressive language model is a model based on conditional probability, used to predict a given The probability of occurrence of the next word in the previous word sequence. The goal of this model is to predict the probability distribution of the next word based on the previous word sequence. Assume that a text sequence X=[x1,x2,…,xt] is given, where xt represents the t-th word. The goal of the autoregressive language model is to predict the occurrence probability P(xt 1|X) of the next word xt 1. By calculating conditional probabilities, the model can generate continuous text by making predictions based on previous sequences of words.
The core idea of the autoregressive language model is to use the previous word sequence to generate the next word. Specifically, the autoregressive language model treats the text sequence as a sequence of random variables X1, X2,...,XT, where each random variable represents a word. The model assumes that the word at the current moment is only related to a limited number of previous words, that is, the word at the current moment is only related to the previous word sequence X1, X2,...,Xt-1. This is the Markov hypothesis.
According to Bayes’ theorem, P(xt 1|X) can be expressed as:
P(xt 1|X)= P(xt 1|X1,
P(xt 1|X)=P(xt 1|xt,xt-1,…,x1)
This formula means that the occurrence probability of the next word depends on the occurrence of the previous word. That is, if the previous word sequence is known, the occurrence probability of the next word can be predicted based on the conditional probability.
The training process of the autoregressive language model is based on a large amount of text data to calculate the probability distribution of each word appearing given the previous word sequence. Specifically, the model treats each word in the training data as a discrete random variable, and then uses the maximum likelihood estimation method to calculate the conditional probability distribution of each word given the previous word sequence. In this way, a complete language model can be obtained for generating and predicting text sequences.
3. Implementation of autoregressive language model
The implementation of autoregressive language model can use a variety of methods, among which the more common ones are based on Neural network approach. This method treats the text sequence as a time series, with each word representing a time point, and then uses a Recurrent Neural Network (RNN) or Transformer model to model it. The following are two commonly used autoregressive language model implementation methods:
1. RNN-based autoregressive language model
RNN is a Commonly used sequence models can model time series data and have certain memory capabilities. In autoregressive language models, RNN can be used to model text sequences. Specifically, the input of RNN is the word vector representation of the previous word sequence, and the output is the probability distribution of the next word. Since RNN has memory capabilities, it can capture long-distance dependencies in the model.
Usually, using an RNN-based autoregressive language model requires the following steps:
1) Encode the words and convert each words are mapped to a fixed-length vector representation.
2) Input the encoded word sequence into RNN for modeling.
3) Convert the output of RNN into the probability distribution of the next word through the softmax function.
4) Use the cross-entropy loss function to train the model so that the prediction results of the model are as close as possible to the real text sequence.
2. Autoregressive language model based on Transformer
Трансформер — это новый тип модели последовательностей с хорошим параллелизмом и эффективностью, широко используемый в области обработки естественного языка. В авторегрессионных языковых моделях Трансформеры можно использовать для моделирования текстовых последовательностей. В частности, входные данные Transformer — это векторное представление предыдущей последовательности слов, а выходные данные — распределение вероятностей следующего слова. Поскольку Transformer можно рассчитывать параллельно, он имеет высокую эффективность во время обучения и вывода.
#Обычно использование модели авторегрессионного языка на основе Transformer требует следующих шагов:
#1) Кодирование слов и преобразование каждого сопоставленного слова к векторному представлению фиксированной длины.
#2) Используйте механизм самообслуживания с несколькими головками для моделирования закодированной последовательности слов для фиксации зависимостей между различными позициями.
#3) Преобразуйте выходные данные Transformer в распределение вероятностей следующего слова с помощью функции softmax.
#4) Используйте функцию перекрестной энтропии для обучения модели так, чтобы результаты прогнозирования модели были как можно ближе к реальной текстовой последовательности.
#4.Применение авторегрессионной языковой модели
Авторегрессивная языковая модель широко используется в области обработки естественного языка, включая генерацию языка, Машинный перевод, распознавание речи и т. д. Ниже приведены варианты применения авторегрессионных языковых моделей в различных сценариях применения:
#1. Генерация языка
Генерация языка основана на авторегрессионных языковых моделях. Одно из основных приложений, его цель — генерировать непрерывные текстовые последовательности, соответствующие грамматическим и семантическим правилам. При генерации языка авторегрессионные языковые модели предсказывают вероятность появления следующего слова на основе предыдущей последовательности слов, тем самым генерируя непрерывную текстовую последовательность. Например, авторегрессионные языковые модели можно использовать для создания текстового контента, такого как новостные репортажи, обзоры фильмов и т. д.
#2.Машинный перевод
Машинный перевод — еще одна важная область применения авторегрессионных языковых моделей. Его цель — преобразовать переведенный текст в текст. на другом языке. В машинном переводе авторегрессионная языковая модель может принимать текстовую последовательность исходного языка в качестве входных данных и прогнозировать текстовую последовательность целевого языка, тем самым реализуя функцию перевода. Например, вы можете использовать авторегрессионную языковую модель для перевода с английского на китайский или с китайского на французский и т. д.
3.Распознавание речи
#######В распознавании речи авторегрессионные языковые модели могут использоваться для декодирования речевых сигналов и преобразования их в текстовые представления. В частности, авторегрессионная языковая модель может использовать предыдущую текстовую последовательность для прогнозирования вероятности появления следующего слова, а затем декодировать речевой сигнал в соответствующую текстовую последовательность. Например, авторегрессионную языковую модель можно использовать для преобразования человеческой речи в текстовое представление для реализации возможностей распознавания речи. ###################Короче говоря, авторегрессионная языковая модель — это очень полезная технология обработки естественного языка, которую можно использовать для генерации и прогнозирования текстовых последовательностей. Она широко используется в генерации языка, машинном переводе, речи признание и т.п. область. В практических приложениях для моделирования и прогнозирования текстовых последовательностей можно использовать методы на основе нейронных сетей, такие как авторегрессионные языковые модели на основе RNN и Transformer. ###The above is the detailed content of Autoregressive properties of language models. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

This site reported on June 27 that Jianying is a video editing software developed by FaceMeng Technology, a subsidiary of ByteDance. It relies on the Douyin platform and basically produces short video content for users of the platform. It is compatible with iOS, Android, and Windows. , MacOS and other operating systems. Jianying officially announced the upgrade of its membership system and launched a new SVIP, which includes a variety of AI black technologies, such as intelligent translation, intelligent highlighting, intelligent packaging, digital human synthesis, etc. In terms of price, the monthly fee for clipping SVIP is 79 yuan, the annual fee is 599 yuan (note on this site: equivalent to 49.9 yuan per month), the continuous monthly subscription is 59 yuan per month, and the continuous annual subscription is 499 yuan per year (equivalent to 41.6 yuan per month) . In addition, the cut official also stated that in order to improve the user experience, those who have subscribed to the original VIP

Improve developer productivity, efficiency, and accuracy by incorporating retrieval-enhanced generation and semantic memory into AI coding assistants. Translated from EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, author JanakiramMSV. While basic AI programming assistants are naturally helpful, they often fail to provide the most relevant and correct code suggestions because they rely on a general understanding of the software language and the most common patterns of writing software. The code generated by these coding assistants is suitable for solving the problems they are responsible for solving, but often does not conform to the coding standards, conventions and styles of the individual teams. This often results in suggestions that need to be modified or refined in order for the code to be accepted into the application

To learn more about AIGC, please visit: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou is different from the traditional question bank that can be seen everywhere on the Internet. These questions It requires thinking outside the box. Large Language Models (LLMs) are increasingly important in the fields of data science, generative artificial intelligence (GenAI), and artificial intelligence. These complex algorithms enhance human skills and drive efficiency and innovation in many industries, becoming the key for companies to remain competitive. LLM has a wide range of applications. It can be used in fields such as natural language processing, text generation, speech recognition and recommendation systems. By learning from large amounts of data, LLM is able to generate text

Large Language Models (LLMs) are trained on huge text databases, where they acquire large amounts of real-world knowledge. This knowledge is embedded into their parameters and can then be used when needed. The knowledge of these models is "reified" at the end of training. At the end of pre-training, the model actually stops learning. Align or fine-tune the model to learn how to leverage this knowledge and respond more naturally to user questions. But sometimes model knowledge is not enough, and although the model can access external content through RAG, it is considered beneficial to adapt the model to new domains through fine-tuning. This fine-tuning is performed using input from human annotators or other LLM creations, where the model encounters additional real-world knowledge and integrates it

Editor |ScienceAI Question Answering (QA) data set plays a vital role in promoting natural language processing (NLP) research. High-quality QA data sets can not only be used to fine-tune models, but also effectively evaluate the capabilities of large language models (LLM), especially the ability to understand and reason about scientific knowledge. Although there are currently many scientific QA data sets covering medicine, chemistry, biology and other fields, these data sets still have some shortcomings. First, the data form is relatively simple, most of which are multiple-choice questions. They are easy to evaluate, but limit the model's answer selection range and cannot fully test the model's ability to answer scientific questions. In contrast, open-ended Q&A

Editor | KX In the field of drug research and development, accurately and effectively predicting the binding affinity of proteins and ligands is crucial for drug screening and optimization. However, current studies do not take into account the important role of molecular surface information in protein-ligand interactions. Based on this, researchers from Xiamen University proposed a novel multi-modal feature extraction (MFE) framework, which for the first time combines information on protein surface, 3D structure and sequence, and uses a cross-attention mechanism to compare different modalities. feature alignment. Experimental results demonstrate that this method achieves state-of-the-art performance in predicting protein-ligand binding affinities. Furthermore, ablation studies demonstrate the effectiveness and necessity of protein surface information and multimodal feature alignment within this framework. Related research begins with "S

Machine learning is an important branch of artificial intelligence that gives computers the ability to learn from data and improve their capabilities without being explicitly programmed. Machine learning has a wide range of applications in various fields, from image recognition and natural language processing to recommendation systems and fraud detection, and it is changing the way we live. There are many different methods and theories in the field of machine learning, among which the five most influential methods are called the "Five Schools of Machine Learning". The five major schools are the symbolic school, the connectionist school, the evolutionary school, the Bayesian school and the analogy school. 1. Symbolism, also known as symbolism, emphasizes the use of symbols for logical reasoning and expression of knowledge. This school of thought believes that learning is a process of reverse deduction, through existing

According to news from this site on August 1, SK Hynix released a blog post today (August 1), announcing that it will attend the Global Semiconductor Memory Summit FMS2024 to be held in Santa Clara, California, USA from August 6 to 8, showcasing many new technologies. generation product. Introduction to the Future Memory and Storage Summit (FutureMemoryandStorage), formerly the Flash Memory Summit (FlashMemorySummit) mainly for NAND suppliers, in the context of increasing attention to artificial intelligence technology, this year was renamed the Future Memory and Storage Summit (FutureMemoryandStorage) to invite DRAM and storage vendors and many more players. New product SK hynix launched last year
