


Examples of practical applications of the combination of shallow features and deep features
Deep learning has achieved great success in the field of computer vision, and one of the important advances is the use of deep convolutional neural networks (CNN) for image classification. However, deep CNNs usually require large amounts of labeled data and computing resources. In order to reduce the demand for computational resources and labeled data, researchers began to study how to fuse shallow features and deep features to improve image classification performance. This fusion method can take advantage of the high computational efficiency of shallow features and the strong representation ability of deep features. By combining the two, computational costs and data labeling requirements can be reduced while maintaining high classification accuracy. This method is particularly important for application scenarios with small data volumes or limited computing resources. By in-depth study of the fusion method of shallow features and deep features, we can further improve the performance of image classification algorithms and bring more breakthroughs to research and applications in the field of computer vision.
A common method is to use a cascade CNN model. The first CNN model is used to extract shallow features, the second CNN model is used to extract deep features, and finally the The outputs of the two models are concatenated to improve the accuracy of the classification results.
This is an example of using a cascaded CNN model to recognize handwritten digits. The model uses the MNIST dataset, which includes 60,000 training images and 10,000 test images, each image size is 28×28 pixels.
First, we define the architecture of the model. We use two CNN models to extract features. The first CNN model contains two convolutional layers and a max pooling layer to extract shallow features. The second CNN model contains three convolutional layers and a max pooling layer to extract deep features. Next, we concatenate the outputs of the two models together and add two fully connected layers for classification. Such an architecture can extract rich features and perform better classification tasks.
import tensorflow as tf from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, Flatten, Dense, Concatenate # Define shallow CNN model shallow_input = Input(shape=(28, 28, 1)) shallow_conv1 = Conv2D(32, (3, 3), activation='relu', padding='same')(shallow_input) shallow_pool1 = MaxPooling2D((2, 2))(shallow_conv1) shallow_conv2 = Conv2D(64, (3, 3), activation='relu', padding='same')(shallow_pool1) shallow_pool2 = MaxPooling2D((2, 2))(shallow_conv2) shallow_flat = Flatten()(shallow_pool2) shallow_output = Dense(128, activation='relu')(shallow_flat) # Define deep CNN model deep_input = Input(shape=(28, 28, 1)) deep_conv1 = Conv2D(32, (3, 3), activation='relu', padding='same')(deep_input) deep_pool1 = MaxPooling2D((2, 2))(deep_conv1) deep_conv2 = Conv2D(64, (3, 3), activation='relu', padding='same')(deep_pool1) deep_pool2 = MaxPooling2D((2, 2))(deep_conv2) deep_conv3 = Conv2D(128, (3, 3), activation='relu', padding='same')(deep_pool2) deep_pool3 = MaxPooling2D((2, 2))(deep_conv3) deep_flat = Flatten()(deep_pool3) deep_output = Dense(256, activation='relu')(deep_flat) # Concatenate shallow and deep models concatenate = Concatenate()([shallow_output, deep_output]) output = Dense(10, activation='softmax')(concatenate) # Define the model model = tf.keras.Model(inputs=[shallow_input, deep_input], outputs=output)
The model is then compiled and trained. Since the MNIST dataset is a multi-class classification problem, the cross-entropy loss function and Adam optimizer are used to compile the model. The model is trained on the training set for 100 epochs, using 128 batches for each epoch.
# Compile the model model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # Train the model model.fit([x_train, x_train], y_train, batch_size=128, epochs=100, verbose=1, validation_data=([x_test, x_test], y_test))
Finally, evaluate the model’s performance on the test set. In this example, the test accuracy of the cascaded CNN model is 99.2%, which is about 0.5% higher than the test accuracy trained with a single CNN model, indicating that the fusion of shallow features and deep features can indeed improve the performance of image classification.
In short, the fusion of shallow features and deep features is an effective method to improve the performance of image classification. This example shows how to use cascaded CNN models to recognize handwritten digits, where the first CNN model extracts shallow features, the second CNN model extracts deep features, and then the outputs of the two models are concatenated together for classification. This method is also widely used in many other image classification tasks.
The above is the detailed content of Examples of practical applications of the combination of shallow features and deep features. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Written previously, today we discuss how deep learning technology can improve the performance of vision-based SLAM (simultaneous localization and mapping) in complex environments. By combining deep feature extraction and depth matching methods, here we introduce a versatile hybrid visual SLAM system designed to improve adaptation in challenging scenarios such as low-light conditions, dynamic lighting, weakly textured areas, and severe jitter. sex. Our system supports multiple modes, including extended monocular, stereo, monocular-inertial, and stereo-inertial configurations. In addition, it also analyzes how to combine visual SLAM with deep learning methods to inspire other research. Through extensive experiments on public datasets and self-sampled data, we demonstrate the superiority of SL-SLAM in terms of positioning accuracy and tracking robustness.

Old photo restoration is a method of using artificial intelligence technology to repair, enhance and improve old photos. Using computer vision and machine learning algorithms, the technology can automatically identify and repair damage and flaws in old photos, making them look clearer, more natural and more realistic. The technical principles of old photo restoration mainly include the following aspects: 1. Image denoising and enhancement. When restoring old photos, they need to be denoised and enhanced first. Image processing algorithms and filters, such as mean filtering, Gaussian filtering, bilateral filtering, etc., can be used to solve noise and color spots problems, thereby improving the quality of photos. 2. Image restoration and repair In old photos, there may be some defects and damage, such as scratches, cracks, fading, etc. These problems can be solved by image restoration and repair algorithms

In today's wave of rapid technological changes, Artificial Intelligence (AI), Machine Learning (ML) and Deep Learning (DL) are like bright stars, leading the new wave of information technology. These three words frequently appear in various cutting-edge discussions and practical applications, but for many explorers who are new to this field, their specific meanings and their internal connections may still be shrouded in mystery. So let's take a look at this picture first. It can be seen that there is a close correlation and progressive relationship between deep learning, machine learning and artificial intelligence. Deep learning is a specific field of machine learning, and machine learning

Almost 20 years have passed since the concept of deep learning was proposed in 2006. Deep learning, as a revolution in the field of artificial intelligence, has spawned many influential algorithms. So, what do you think are the top 10 algorithms for deep learning? The following are the top algorithms for deep learning in my opinion. They all occupy an important position in terms of innovation, application value and influence. 1. Deep neural network (DNN) background: Deep neural network (DNN), also called multi-layer perceptron, is the most common deep learning algorithm. When it was first invented, it was questioned due to the computing power bottleneck. Until recent years, computing power, The breakthrough came with the explosion of data. DNN is a neural network model that contains multiple hidden layers. In this model, each layer passes input to the next layer and

The bidirectional LSTM model is a neural network used for text classification. Below is a simple example demonstrating how to use bidirectional LSTM for text classification tasks. First, we need to import the required libraries and modules: importosimportnumpyasnpfromkeras.preprocessing.textimportTokenizerfromkeras.preprocessing.sequenceimportpad_sequencesfromkeras.modelsimportSequentialfromkeras.layersimportDense,Em

Editor | Radish Skin Since the release of the powerful AlphaFold2 in 2021, scientists have been using protein structure prediction models to map various protein structures within cells, discover drugs, and draw a "cosmic map" of every known protein interaction. . Just now, Google DeepMind released the AlphaFold3 model, which can perform joint structure predictions for complexes including proteins, nucleic acids, small molecules, ions and modified residues. The accuracy of AlphaFold3 has been significantly improved compared to many dedicated tools in the past (protein-ligand interaction, protein-nucleic acid interaction, antibody-antigen prediction). This shows that within a single unified deep learning framework, it is possible to achieve

Object tracking is an important task in computer vision and is widely used in traffic monitoring, robotics, medical imaging, automatic vehicle tracking and other fields. It uses deep learning methods to predict or estimate the position of the target object in each consecutive frame in the video after determining the initial position of the target object. Object tracking has a wide range of applications in real life and is of great significance in the field of computer vision. Object tracking usually involves the process of object detection. The following is a brief overview of the object tracking steps: 1. Object detection, where the algorithm classifies and detects objects by creating bounding boxes around them. 2. Assign a unique identification (ID) to each object. 3. Track the movement of detected objects in frames while storing relevant information. Types of Target Tracking Targets

Convolutional Neural Network (CNN) and Transformer are two different deep learning models that have shown excellent performance on different tasks. CNN is mainly used for computer vision tasks such as image classification, target detection and image segmentation. It extracts local features on the image through convolution operations, and performs feature dimensionality reduction and spatial invariance through pooling operations. In contrast, Transformer is mainly used for natural language processing (NLP) tasks such as machine translation, text classification, and speech recognition. It uses a self-attention mechanism to model dependencies in sequences, avoiding the sequential computation in traditional recurrent neural networks. Although these two models are used for different tasks, they have similarities in sequence modeling, so
