Home Technology peripherals AI Image Classification in Computer Vision Applications Using Practical Tips for Transfer Learning

Image Classification in Computer Vision Applications Using Practical Tips for Transfer Learning

Jan 22, 2024 pm 06:00 PM
deep learning computer vision

Image Classification in Computer Vision Applications Using Practical Tips for Transfer Learning

Transfer learning is a powerful technique in deep learning that can apply already learned knowledge to different but related tasks. This technique is particularly useful in computer vision, where collecting and annotating large amounts of image data is very expensive. This article explores practical techniques for using transfer learning in the field of image classification.

The first consideration is the data set. When using transfer learning, a large and diverse training data set is required. To save time and cost, you can choose to use public and open source data sets.

The first step in deep transfer learning (DTL) is to establish a good baseline model. The establishment of a baseline model can be achieved by selecting appropriate image size, backbone network, batch size, learning rate and number of epochs. These choices determine the performance and training effectiveness of the model. Through rapid iteration and experimentation, the baseline model can help us conduct subsequent deep transfer learning research and experiments.

After establishing a good baseline model, the next step is to fine-tune the learning rate and epoch number. This step is very important in deep transfer learning because it has a significant impact on the performance of the model. When choosing the learning rate and epoch number, it needs to be determined based on the characteristics of the backbone network and data set. For learning rates, a good starting range is usually between 0.0001 and 0.001. If the learning rate is set too high, the model may fail to converge; if the learning rate is set too low, the model may converge too slowly. Therefore, through experiments and observation of the training situation of the model, the learning rate is gradually adjusted to achieve the best performance. For epoch number, a good starting range is usually between 2 and 10. The number of epochs refers to the number of times that all samples in the training set are used completely once. A smaller number of epochs may lead to underfitting of the model.

After adjusting the learning rate and number of rounds, you can consider expanding the training images to improve model performance. Commonly used enhancement methods include horizontal and vertical flipping, resizing, rotating, moving, shearing, and techniques such as Cutmix and Mixup. These augmentation methods are able to randomly change the training images, making the model more robust.

The next step is to optimize the complexity of the model and input. This can be achieved by adjusting the complexity of the model or adjusting the backbone. This step aims to find the best model for the specific task and data.

After adjusting the model and input complexity, you can further optimize the model by increasing the image size, trying different backbones or architectures.

The last step is to retrain the model on the complete training data and perform model blending. This step is very critical because the more data used to train the model, the better its performance will be. Model blending is a technique that combines multiple models to improve overall model performance. When doing model blending, it is important to use the same settings with different adjustments, such as using different backbone networks, data augmentation methods, training cycles, image sizes, etc. This can increase the diversity of the model and improve its generalization ability.

In addition to these steps, there are some tips you can use to improve model performance. One of them is Test Time Augmentation (TTA), which improves model performance by applying augmentation techniques to test data. Additionally, another approach is to increase the image size during inference, which helps improve model performance. Finally, the use of post-processing and 2nd stage models is also an effective means to improve model performance.

The above is the detailed content of Image Classification in Computer Vision Applications Using Practical Tips for Transfer Learning. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Beyond ORB-SLAM3! SL-SLAM: Low light, severe jitter and weak texture scenes are all handled Beyond ORB-SLAM3! SL-SLAM: Low light, severe jitter and weak texture scenes are all handled May 30, 2024 am 09:35 AM

Written previously, today we discuss how deep learning technology can improve the performance of vision-based SLAM (simultaneous localization and mapping) in complex environments. By combining deep feature extraction and depth matching methods, here we introduce a versatile hybrid visual SLAM system designed to improve adaptation in challenging scenarios such as low-light conditions, dynamic lighting, weakly textured areas, and severe jitter. sex. Our system supports multiple modes, including extended monocular, stereo, monocular-inertial, and stereo-inertial configurations. In addition, it also analyzes how to combine visual SLAM with deep learning methods to inspire other research. Through extensive experiments on public datasets and self-sampled data, we demonstrate the superiority of SL-SLAM in terms of positioning accuracy and tracking robustness.

Latent space embedding: explanation and demonstration Latent space embedding: explanation and demonstration Jan 22, 2024 pm 05:30 PM

Latent Space Embedding (LatentSpaceEmbedding) is the process of mapping high-dimensional data to low-dimensional space. In the field of machine learning and deep learning, latent space embedding is usually a neural network model that maps high-dimensional input data into a set of low-dimensional vector representations. This set of vectors is often called "latent vectors" or "latent encodings". The purpose of latent space embedding is to capture important features in the data and represent them into a more concise and understandable form. Through latent space embedding, we can perform operations such as visualizing, classifying, and clustering data in low-dimensional space to better understand and utilize the data. Latent space embedding has wide applications in many fields, such as image generation, feature extraction, dimensionality reduction, etc. Latent space embedding is the main

The difference between single-stage and dual-stage target detection algorithms The difference between single-stage and dual-stage target detection algorithms Jan 23, 2024 pm 01:48 PM

Object detection is an important task in the field of computer vision, used to identify objects in images or videos and locate their locations. This task is usually divided into two categories of algorithms, single-stage and two-stage, which differ in terms of accuracy and robustness. Single-stage target detection algorithm The single-stage target detection algorithm converts target detection into a classification problem. Its advantage is that it is fast and can complete the detection in just one step. However, due to oversimplification, the accuracy is usually not as good as the two-stage object detection algorithm. Common single-stage target detection algorithms include YOLO, SSD and FasterR-CNN. These algorithms generally take the entire image as input and run a classifier to identify the target object. Unlike traditional two-stage target detection algorithms, they do not need to define areas in advance, but directly predict

How to use AI technology to restore old photos (with examples and code analysis) How to use AI technology to restore old photos (with examples and code analysis) Jan 24, 2024 pm 09:57 PM

Old photo restoration is a method of using artificial intelligence technology to repair, enhance and improve old photos. Using computer vision and machine learning algorithms, the technology can automatically identify and repair damage and flaws in old photos, making them look clearer, more natural and more realistic. The technical principles of old photo restoration mainly include the following aspects: 1. Image denoising and enhancement. When restoring old photos, they need to be denoised and enhanced first. Image processing algorithms and filters, such as mean filtering, Gaussian filtering, bilateral filtering, etc., can be used to solve noise and color spots problems, thereby improving the quality of photos. 2. Image restoration and repair In old photos, there may be some defects and damage, such as scratches, cracks, fading, etc. These problems can be solved by image restoration and repair algorithms

Application of AI technology in image super-resolution reconstruction Application of AI technology in image super-resolution reconstruction Jan 23, 2024 am 08:06 AM

Super-resolution image reconstruction is the process of generating high-resolution images from low-resolution images using deep learning techniques, such as convolutional neural networks (CNN) and generative adversarial networks (GAN). The goal of this method is to improve the quality and detail of images by converting low-resolution images into high-resolution images. This technology has wide applications in many fields, such as medical imaging, surveillance cameras, satellite images, etc. Through super-resolution image reconstruction, we can obtain clearer and more detailed images, which helps to more accurately analyze and identify targets and features in images. Reconstruction methods Super-resolution image reconstruction methods can generally be divided into two categories: interpolation-based methods and deep learning-based methods. 1) Interpolation-based method Super-resolution image reconstruction based on interpolation

Understand in one article: the connections and differences between AI, machine learning and deep learning Understand in one article: the connections and differences between AI, machine learning and deep learning Mar 02, 2024 am 11:19 AM

In today's wave of rapid technological changes, Artificial Intelligence (AI), Machine Learning (ML) and Deep Learning (DL) are like bright stars, leading the new wave of information technology. These three words frequently appear in various cutting-edge discussions and practical applications, but for many explorers who are new to this field, their specific meanings and their internal connections may still be shrouded in mystery. So let's take a look at this picture first. It can be seen that there is a close correlation and progressive relationship between deep learning, machine learning and artificial intelligence. Deep learning is a specific field of machine learning, and machine learning

Super strong! Top 10 deep learning algorithms! Super strong! Top 10 deep learning algorithms! Mar 15, 2024 pm 03:46 PM

Almost 20 years have passed since the concept of deep learning was proposed in 2006. Deep learning, as a revolution in the field of artificial intelligence, has spawned many influential algorithms. So, what do you think are the top 10 algorithms for deep learning? The following are the top algorithms for deep learning in my opinion. They all occupy an important position in terms of innovation, application value and influence. 1. Deep neural network (DNN) background: Deep neural network (DNN), also called multi-layer perceptron, is the most common deep learning algorithm. When it was first invented, it was questioned due to the computing power bottleneck. Until recent years, computing power, The breakthrough came with the explosion of data. DNN is a neural network model that contains multiple hidden layers. In this model, each layer passes input to the next layer and

Scale Invariant Features (SIFT) algorithm Scale Invariant Features (SIFT) algorithm Jan 22, 2024 pm 05:09 PM

The Scale Invariant Feature Transform (SIFT) algorithm is a feature extraction algorithm used in the fields of image processing and computer vision. This algorithm was proposed in 1999 to improve object recognition and matching performance in computer vision systems. The SIFT algorithm is robust and accurate and is widely used in image recognition, three-dimensional reconstruction, target detection, video tracking and other fields. It achieves scale invariance by detecting key points in multiple scale spaces and extracting local feature descriptors around the key points. The main steps of the SIFT algorithm include scale space construction, key point detection, key point positioning, direction assignment and feature descriptor generation. Through these steps, the SIFT algorithm can extract robust and unique features, thereby achieving efficient image processing.

See all articles