Table of Contents
一、DAG介绍
二、最短路径问题
三、有向无环图在最短路径问题中的应用示例
Home Technology peripherals AI Application scenarios and examples: Application of directed acyclic graph (DAG) in the shortest path problem

Application scenarios and examples: Application of directed acyclic graph (DAG) in the shortest path problem

Jan 22, 2024 pm 07:09 PM
machine learning

Application scenarios and examples: Application of directed acyclic graph (DAG) in the shortest path problem

有向无环图(DAG)在最短路径问题中可以优化算法的时间复杂度和空间复杂度。在任务调度、时间管理等实际应用中,DAG可方便确定任务执行顺序,通过拓扑排序简化动态规划计算,提高算法效率。本文将详细介绍DAG在最短路径问题中的应用,并通过代码示例说明实现方式。

一、DAG介绍

DAG是一种有向图,它没有环。这意味着从任何一个顶点出发,都不可能回到该顶点。因此,DAG可以用来表示具有特定约束关系的任务调度问题,例如某些任务必须在其他任务完成之后才能开始。DAG的特性使得它在计算机科学和工程领域有着广泛的应用,例如编译器优化、并行计算和数据流分析等。通过合理的任务调度和依赖关系管理,DAG可以提高系统的效率和性能,有效地解决复杂的任务调度问题。

二、最短路径问题

最短路径问题涉及从起点到终点的路径,目标是找到边权值和最小的路径。在有向无环图中,可以通过拓扑排序和动态规划来解决。

拓扑排序是一种用于确定有向无环图(DAG)中节点相对顺序的方法,它对应于动态规划中递推公式的正确计算。在拓扑排序过程中,节点的入度起着关键作用。首先,从入度为0的节点开始,将其加入拓扑序列,并将其邻接节点的入度减1。然后,重复这个过程,直到所有节点都被加入拓扑序列,或者发现DAG中存在环。通过拓扑排序,我们可以获得DAG中节点的相对顺序,从而确保动态规划的递推公式的正确性。

动态规划的递推公式如下:

设dist表示从起点到节点i的最短路径长度,则有:

dist=min{dist[j]+w(j,i)},其中j是i的前驱节点,w(j,i)是从j到i的边权值。

为了方便起见,可以使用一个数组d来存储dist的值,初始时所有节点的d值设置为无穷大,起点的d值设置为0。然后,按照拓扑序列的顺序,依次更新每个节点的d值,直到更新完所有节点。具体而言,对于每个节点i,遍历其所有邻接节点j,如果d[j]+w(j,i),则更新d的值为d[j]+w(j,i)。

这个过程可以用代码来实现,示例代码如下:

def shortest_path(graph, start):
    # 初始化d数组,起点d值为0,其他节点d值为无穷大
    d = {node: float('inf') for node in graph}
    d[start] = 0

    # 拓扑排序,确定节点的相对顺序
    topo_order = []
    in_degree = {node: 0 for node in graph}
    for node in graph:
        for neighbor in graph[node]:
            in_degree[neighbor] += 1
    queue = [node for node in graph if in_degree[node] == 0]
    while queue:
        node = queue.pop(0)
        topo_order.append(node)
        for neighbor in graph[node]:
            in_degree[neighbor] -= 1
            if in_degree[neighbor] == 0:
                queue.append(neighbor)

    # 动态规划,依次更新每个节点的d值
    for node in topo_order:
        for neighbor in graph[node]:
            new_distance = d[node] + graph[node][neighbor]
            if new_distance < d[neighbor]:
                d[neighbor] = new_distance

    return d
Copy after login

三、有向无环图在最短路径问题中的应用示例

假设有一个任务调度问题,有7个任务需要完成,它们之间有一些依赖关系,其中,设红色节点表示起点,绿色节点表示终点。每个节点的标签表示该任务的耗时。任务之间的边表示依赖关系,比如节点1和2之间的边表示任务2必须在任务1完成后才能开始。

现在,我们需要找到一种最短的方式来完成所有任务,即使得完成所有任务的总时间最小。这个问题可以转化为一个最短路径问题,其中每个节点表示一个任务,节点之间的边表示依赖关系,边权值表示完成前一个任务所需要的时间。

根据上面的动态规划递推公式,我们可以使用拓扑排序和动态规划来解决这个问题。代码如下:

graph = {
    1: {2: 2, 3: 1},
    2: {4: 2, 5: 3},
    3: {4: 1, 5: 2},
    4: {6: 4},
    5: {6: 2},
    6: {}
}

start = 1
dist = shortest_path(graph, start)
print(dist[6])  # 输出最短路径长度,即完成所有任务的最小时间
Copy after login

输出结果为:9,表示完成所有任务的最小时间为9个时间单位。

The above is the detailed content of Application scenarios and examples: Application of directed acyclic graph (DAG) in the shortest path problem. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

15 recommended open source free image annotation tools 15 recommended open source free image annotation tools Mar 28, 2024 pm 01:21 PM

Image annotation is the process of associating labels or descriptive information with images to give deeper meaning and explanation to the image content. This process is critical to machine learning, which helps train vision models to more accurately identify individual elements in images. By adding annotations to images, the computer can understand the semantics and context behind the images, thereby improving the ability to understand and analyze the image content. Image annotation has a wide range of applications, covering many fields, such as computer vision, natural language processing, and graph vision models. It has a wide range of applications, such as assisting vehicles in identifying obstacles on the road, and helping in the detection and diagnosis of diseases through medical image recognition. . This article mainly recommends some better open source and free image annotation tools. 1.Makesens

This article will take you to understand SHAP: model explanation for machine learning This article will take you to understand SHAP: model explanation for machine learning Jun 01, 2024 am 10:58 AM

In the fields of machine learning and data science, model interpretability has always been a focus of researchers and practitioners. With the widespread application of complex models such as deep learning and ensemble methods, understanding the model's decision-making process has become particularly important. Explainable AI|XAI helps build trust and confidence in machine learning models by increasing the transparency of the model. Improving model transparency can be achieved through methods such as the widespread use of multiple complex models, as well as the decision-making processes used to explain the models. These methods include feature importance analysis, model prediction interval estimation, local interpretability algorithms, etc. Feature importance analysis can explain the decision-making process of a model by evaluating the degree of influence of the model on the input features. Model prediction interval estimate

Identify overfitting and underfitting through learning curves Identify overfitting and underfitting through learning curves Apr 29, 2024 pm 06:50 PM

This article will introduce how to effectively identify overfitting and underfitting in machine learning models through learning curves. Underfitting and overfitting 1. Overfitting If a model is overtrained on the data so that it learns noise from it, then the model is said to be overfitting. An overfitted model learns every example so perfectly that it will misclassify an unseen/new example. For an overfitted model, we will get a perfect/near-perfect training set score and a terrible validation set/test score. Slightly modified: "Cause of overfitting: Use a complex model to solve a simple problem and extract noise from the data. Because a small data set as a training set may not represent the correct representation of all data." 2. Underfitting Heru

Transparent! An in-depth analysis of the principles of major machine learning models! Transparent! An in-depth analysis of the principles of major machine learning models! Apr 12, 2024 pm 05:55 PM

In layman’s terms, a machine learning model is a mathematical function that maps input data to a predicted output. More specifically, a machine learning model is a mathematical function that adjusts model parameters by learning from training data to minimize the error between the predicted output and the true label. There are many models in machine learning, such as logistic regression models, decision tree models, support vector machine models, etc. Each model has its applicable data types and problem types. At the same time, there are many commonalities between different models, or there is a hidden path for model evolution. Taking the connectionist perceptron as an example, by increasing the number of hidden layers of the perceptron, we can transform it into a deep neural network. If a kernel function is added to the perceptron, it can be converted into an SVM. this one

The evolution of artificial intelligence in space exploration and human settlement engineering The evolution of artificial intelligence in space exploration and human settlement engineering Apr 29, 2024 pm 03:25 PM

In the 1950s, artificial intelligence (AI) was born. That's when researchers discovered that machines could perform human-like tasks, such as thinking. Later, in the 1960s, the U.S. Department of Defense funded artificial intelligence and established laboratories for further development. Researchers are finding applications for artificial intelligence in many areas, such as space exploration and survival in extreme environments. Space exploration is the study of the universe, which covers the entire universe beyond the earth. Space is classified as an extreme environment because its conditions are different from those on Earth. To survive in space, many factors must be considered and precautions must be taken. Scientists and researchers believe that exploring space and understanding the current state of everything can help understand how the universe works and prepare for potential environmental crises

Implementing Machine Learning Algorithms in C++: Common Challenges and Solutions Implementing Machine Learning Algorithms in C++: Common Challenges and Solutions Jun 03, 2024 pm 01:25 PM

Common challenges faced by machine learning algorithms in C++ include memory management, multi-threading, performance optimization, and maintainability. Solutions include using smart pointers, modern threading libraries, SIMD instructions and third-party libraries, as well as following coding style guidelines and using automation tools. Practical cases show how to use the Eigen library to implement linear regression algorithms, effectively manage memory and use high-performance matrix operations.

Five schools of machine learning you don't know about Five schools of machine learning you don't know about Jun 05, 2024 pm 08:51 PM

Machine learning is an important branch of artificial intelligence that gives computers the ability to learn from data and improve their capabilities without being explicitly programmed. Machine learning has a wide range of applications in various fields, from image recognition and natural language processing to recommendation systems and fraud detection, and it is changing the way we live. There are many different methods and theories in the field of machine learning, among which the five most influential methods are called the "Five Schools of Machine Learning". The five major schools are the symbolic school, the connectionist school, the evolutionary school, the Bayesian school and the analogy school. 1. Symbolism, also known as symbolism, emphasizes the use of symbols for logical reasoning and expression of knowledge. This school of thought believes that learning is a process of reverse deduction, through existing

Explainable AI: Explaining complex AI/ML models Explainable AI: Explaining complex AI/ML models Jun 03, 2024 pm 10:08 PM

Translator | Reviewed by Li Rui | Chonglou Artificial intelligence (AI) and machine learning (ML) models are becoming increasingly complex today, and the output produced by these models is a black box – unable to be explained to stakeholders. Explainable AI (XAI) aims to solve this problem by enabling stakeholders to understand how these models work, ensuring they understand how these models actually make decisions, and ensuring transparency in AI systems, Trust and accountability to address this issue. This article explores various explainable artificial intelligence (XAI) techniques to illustrate their underlying principles. Several reasons why explainable AI is crucial Trust and transparency: For AI systems to be widely accepted and trusted, users need to understand how decisions are made

See all articles