


Explore the concepts, differences, advantages and disadvantages of RNN, LSTM and GRU
In time series data, there are dependencies between observations, so they are not independent of each other. However, traditional neural networks treat each observation as independent, which limits the model's ability to model time series data. To solve this problem, Recurrent Neural Network (RNN) was introduced, which introduced the concept of memory to capture the dynamic characteristics of time series data by establishing dependencies between data points in the network. Through recurrent connections, RNN can pass previous information into the current observation to better predict future values. This makes RNN a powerful tool for tasks involving time series data.
But how does RNN achieve this kind of memory?
RNN realizes memory through the feedback loop in the neural network. This is the main difference between RNN and traditional neural networks. Feedback loops allow information to be passed within layers, whereas feedforward neural networks have information passed only between layers. Therefore, there are different types of RNNs:
- Recurrent Neural Network (RNN)
- Long Short-Term Memory Network (LSTM)
- Gate Controlled Recurrent Unit Network (GRU)
This article will introduce the concepts, similarities and differences of RNN, LSTM and GRU, as well as some of their advantages and disadvantages.
Recurrent Neural Network (RNN)
Through a feedback loop, the output of an RNN unit is also used as input by the same unit. Therefore, every RNN has two inputs: past and present. Using past information creates short-term memory.
For a better understanding, the feedback loop of the RNN unit can be expanded. The length of the expanded cell is equal to the number of time steps of the input sequence.
You can see how past observations are passed through the unfolded network as hidden states. In each cell, the input from the current time step, the hidden state from the previous time step, and the bias are combined and then constrained through an activation function to determine the hidden state at the current time step.
RNN can be used for one-to-one, one-to-many, many-to-one and many-to-many predictions.
Advantages of RNN
Due to its short-term memory, RNN can process sequential data and identify patterns in historical data. In addition, RNN is able to handle inputs of different lengths.
Disadvantages of RNN
RNN has the problem of vanishing gradient descent. In this case, the gradient used to update the weights during backpropagation becomes very small. Multiplying weights with gradients close to zero prevents the network from learning new weights. Stopping learning causes the RNN to forget what it has seen in longer sequences. The problem of vanishing gradient descent increases with the number of network layers.
Because RNN only retains recent information, the model has problems when considering past observations. Therefore, RNN only has short-term memory but no long-term memory.
In addition, since RNN uses backpropagation to update weights in time, the network will also suffer from gradient explosion and, if the ReLu activation function is used, it will be affected by dead ReLu units. The former may cause convergence problems, while the latter may cause learning to cease.
Long Short-Term Memory (LSTM)
LSTM is a special type of RNN that solves the problem of gradient disappearance in RNN.
The key to LSTM is the cell state, which is passed from the input to the output of the cell. The cell state allows information to flow along the entire chain with only smaller linear actions through three gates. Therefore, the cell state represents the long-term memory of the LSTM. These three gates are called forget gate, input gate and output gate respectively. These gates act as filters and control the flow of information and determine which information is kept or ignored.
The forgetting gate determines how much long-term memory should be retained. For this purpose, a sigmoid function is used to account for the importance of the cell state. The output varies between 0 and 1, with 0 retaining no information and 1 retaining all information about the cell state.
The input gate determines what information is added to the cell state and thus to long-term memory.
The output gate determines which parts of the cell state build the output. Therefore, the output gate is responsible for short-term memory.
In general, the state is updated through the forget gate and the input gate.
Advantages of LSTM
The advantages of LSTM are similar to RNN, the main advantage is that they can capture both long-term and short-term patterns of sequences. Therefore, they are the most commonly used RNNs.
Disadvantages of LSTM
Due to the more complex structure, the computational cost of LSTM is higher, resulting in longer training time.
Since LSTM also uses the temporal backpropagation algorithm to update weights, LSTM has the disadvantages of backpropagation, such as dead ReLu units, gradient explosion, etc.
Gated Recurrent Unit (GRU)
Similar to LSTM, GRU solves the vanishing gradient problem of simple RNN. However, the difference from LSTM is that GRU uses fewer gates and does not have a separate internal memory, i.e., the cell state. Therefore, GRU relies entirely on hidden states as memory, leading to a simpler architecture.
The reset gate is responsible for short-term memory as it determines how much past information to retain and ignore.
The update gate is responsible for long-term memory and is comparable to the forget gate of LSTM.
The hidden state of the current time step is determined based on two steps:
First, determine the candidate hidden state. The candidate state is a combination of the current input and the hidden state of the previous time step and the activation function. The influence of the previous hidden state on the candidate hidden state is controlled by the reset gate.
The second step is to combine the candidate hidden state with the hidden state of the previous time step to generate the current hidden state. How the previous hidden state and the candidate hidden state are combined is determined by the update gate.
If the value given by the update gate is 0, the previous hidden state is completely ignored and the current hidden state is equal to the candidate hidden state. If the update gate gives a value of 1, the opposite is true.
Advantages of GRU
Due to its simpler architecture compared to LSTM, GRU has higher computational efficiency and faster training speed. Just requires less memory.
Additionally, GRU has been shown to be more effective for smaller sequences.
Disadvantages of GRU
Since GRUs do not have separate hidden states and cell states, they may not take into account past observations like LSTM .
Similar to RNN and LSTM, GRU may also suffer from the shortcomings of backpropagation and timely update of weights, namely dead ReLu units and gradient explosion.
The above is the detailed content of Explore the concepts, differences, advantages and disadvantages of RNN, LSTM and GRU. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

This site reported on June 27 that Jianying is a video editing software developed by FaceMeng Technology, a subsidiary of ByteDance. It relies on the Douyin platform and basically produces short video content for users of the platform. It is compatible with iOS, Android, and Windows. , MacOS and other operating systems. Jianying officially announced the upgrade of its membership system and launched a new SVIP, which includes a variety of AI black technologies, such as intelligent translation, intelligent highlighting, intelligent packaging, digital human synthesis, etc. In terms of price, the monthly fee for clipping SVIP is 79 yuan, the annual fee is 599 yuan (note on this site: equivalent to 49.9 yuan per month), the continuous monthly subscription is 59 yuan per month, and the continuous annual subscription is 499 yuan per year (equivalent to 41.6 yuan per month) . In addition, the cut official also stated that in order to improve the user experience, those who have subscribed to the original VIP

Improve developer productivity, efficiency, and accuracy by incorporating retrieval-enhanced generation and semantic memory into AI coding assistants. Translated from EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, author JanakiramMSV. While basic AI programming assistants are naturally helpful, they often fail to provide the most relevant and correct code suggestions because they rely on a general understanding of the software language and the most common patterns of writing software. The code generated by these coding assistants is suitable for solving the problems they are responsible for solving, but often does not conform to the coding standards, conventions and styles of the individual teams. This often results in suggestions that need to be modified or refined in order for the code to be accepted into the application

To learn more about AIGC, please visit: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou is different from the traditional question bank that can be seen everywhere on the Internet. These questions It requires thinking outside the box. Large Language Models (LLMs) are increasingly important in the fields of data science, generative artificial intelligence (GenAI), and artificial intelligence. These complex algorithms enhance human skills and drive efficiency and innovation in many industries, becoming the key for companies to remain competitive. LLM has a wide range of applications. It can be used in fields such as natural language processing, text generation, speech recognition and recommendation systems. By learning from large amounts of data, LLM is able to generate text

Large Language Models (LLMs) are trained on huge text databases, where they acquire large amounts of real-world knowledge. This knowledge is embedded into their parameters and can then be used when needed. The knowledge of these models is "reified" at the end of training. At the end of pre-training, the model actually stops learning. Align or fine-tune the model to learn how to leverage this knowledge and respond more naturally to user questions. But sometimes model knowledge is not enough, and although the model can access external content through RAG, it is considered beneficial to adapt the model to new domains through fine-tuning. This fine-tuning is performed using input from human annotators or other LLM creations, where the model encounters additional real-world knowledge and integrates it

Editor |ScienceAI Question Answering (QA) data set plays a vital role in promoting natural language processing (NLP) research. High-quality QA data sets can not only be used to fine-tune models, but also effectively evaluate the capabilities of large language models (LLM), especially the ability to understand and reason about scientific knowledge. Although there are currently many scientific QA data sets covering medicine, chemistry, biology and other fields, these data sets still have some shortcomings. First, the data form is relatively simple, most of which are multiple-choice questions. They are easy to evaluate, but limit the model's answer selection range and cannot fully test the model's ability to answer scientific questions. In contrast, open-ended Q&A

Editor | KX In the field of drug research and development, accurately and effectively predicting the binding affinity of proteins and ligands is crucial for drug screening and optimization. However, current studies do not take into account the important role of molecular surface information in protein-ligand interactions. Based on this, researchers from Xiamen University proposed a novel multi-modal feature extraction (MFE) framework, which for the first time combines information on protein surface, 3D structure and sequence, and uses a cross-attention mechanism to compare different modalities. feature alignment. Experimental results demonstrate that this method achieves state-of-the-art performance in predicting protein-ligand binding affinities. Furthermore, ablation studies demonstrate the effectiveness and necessity of protein surface information and multimodal feature alignment within this framework. Related research begins with "S

Machine learning is an important branch of artificial intelligence that gives computers the ability to learn from data and improve their capabilities without being explicitly programmed. Machine learning has a wide range of applications in various fields, from image recognition and natural language processing to recommendation systems and fraud detection, and it is changing the way we live. There are many different methods and theories in the field of machine learning, among which the five most influential methods are called the "Five Schools of Machine Learning". The five major schools are the symbolic school, the connectionist school, the evolutionary school, the Bayesian school and the analogy school. 1. Symbolism, also known as symbolism, emphasizes the use of symbols for logical reasoning and expression of knowledge. This school of thought believes that learning is a process of reverse deduction, through existing

According to news from this site on August 1, SK Hynix released a blog post today (August 1), announcing that it will attend the Global Semiconductor Memory Summit FMS2024 to be held in Santa Clara, California, USA from August 6 to 8, showcasing many new technologies. generation product. Introduction to the Future Memory and Storage Summit (FutureMemoryandStorage), formerly the Flash Memory Summit (FlashMemorySummit) mainly for NAND suppliers, in the context of increasing attention to artificial intelligence technology, this year was renamed the Future Memory and Storage Summit (FutureMemoryandStorage) to invite DRAM and storage vendors and many more players. New product SK hynix launched last year
