


Deep neural networks for classification calibration and regression calibration
Deep neural network is a powerful machine learning model that can automatically learn features and patterns. However, in practical applications, the output of neural networks often needs to be calibrated to improve performance and reliability. Classification calibration and regression calibration are commonly used calibration techniques, and they have different principles and applications. This article will introduce in detail the working principles and application scenarios of these two technologies.
1. Classification calibration
Classification calibration is to improve the reliability and accuracy of the classifier by adjusting the probability distribution of the classifier output vector to achieve. In a classification problem, a neural network outputs a vector representing the predicted probability of each class. However, these probabilities are not always accurate and may be biased too high or too low. The goal of classification calibration is to adjust these probabilities to make them closer to the true probability distribution. This improves the performance of the classifier, making it more reliable in predicting the probabilities of different classes.
Commonly used classification calibration methods include the following two:
1. Temperature scaling
Temperature scaling is a simple and effective classification calibration technique. Its principle is to adjust the confidence of the classifier by scaling the output of the neural network. Specifically, temperature scaling introduces a temperature parameter T to scale the output of the last layer of the neural network, converting the original prediction probability p into the calibrated probability q:
q_i=\frac{p_i^{\frac{1}{T}}}{\sum_{j=1}^K p_j^{\frac{1}{T}}}
where, i represents the th i categories, K represents the total number of categories. When T=1, temperature scaling will not change the original prediction probability. When T>1, temperature scaling will increase the confidence of the classifier, making the prediction probability more concentrated and confident; when T
The advantages of temperature scaling are that it is simple to implement, low cost, and can be calibrated without retraining the model. However, temperature scaling is not guaranteed to effectively improve the performance of the classifier in all cases because it assumes that the errors of all categories are independent and on the same scale, which is not necessarily true in practical applications.
2.Platt calibration (Platt scaling)
Platt calibration is a relatively traditional classification calibration method, and its principle is based on logistic regression Model, fit the output of the neural network to obtain the calibrated probability distribution. Specifically, Platt calibration introduces a binary logistic regression model to fit the output of the neural network to obtain a new probability distribution. The input of the logistic regression model is the output or feature of the neural network, and the output is a probability value between 0 and 1. By fitting a logistic regression model, the corrected probability value for each category can be obtained.
The advantage of Platt calibration is that it can more accurately estimate the prediction probability and is suitable for a variety of different classification problems. However, Platt calibration requires model fitting, so the computational cost is high, and a large amount of labeled data is required to train the logistic regression model.
2. Regression calibration
Regression calibration refers to correcting the output of the regression model to make it more reliable and accurate. In regression problems, the output of a neural network is usually a continuous real value that represents the value of the predicted target variable. However, there may be bias or variance in these predicted values, requiring regression calibration to improve the accuracy and reliability of the predictions.
Commonly used regression calibration methods include the following two:
1. Historical Average Calibration
Historical average calibration is a simple and effective regression calibration technique. Its principle is to use historical data to calculate the mean and variance of the target variable, and then adjust the predicted value of the neural network. Specifically, historical average calibration obtains a calibration factor by calculating the mean and variance of historical data, and then corrects the predicted value of the neural network to make it closer to the true target value. The advantage of historical average calibration is that it is simple and easy to use, does not require additional training data and computational costs, and is suitable for a variety of different regression problems.
2. Linear Regression Calibration
Linear regression calibration is a regression calibration technology based on a linear regression model. The principle is to map the predicted value of the neural network to the real target value by fitting a linear model. Specifically, linear regression calibration uses additional labeled data to train a linear regression model, taking the predicted value of the neural network as input and the true target value as the output to obtain a linear mapping function, thereby performing the prediction on the neural network's predicted value. calibration.
The advantage of linear regression calibration is that it can more accurately estimate the relationship between the predicted value and the target value, and is suitable for various regression problems. However, the fitting of linear regression models requires a large amount of labeled data and computational costs, and may not be effective for regression problems with nonlinear relationships.
In general, classification calibration and regression calibration are common calibration techniques in deep neural networks, which can improve the performance and reliability of the model. Classification calibration mainly adjusts the confidence of the classifier to make the prediction probability more accurate; regression calibration mainly makes the prediction results closer to the true target value by correcting the bias and variance of the predicted value. In practical applications, appropriate calibration methods need to be selected according to specific problems and combined with other techniques to optimize the performance of the model.
The above is the detailed content of Deep neural networks for classification calibration and regression calibration. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Image annotation is the process of associating labels or descriptive information with images to give deeper meaning and explanation to the image content. This process is critical to machine learning, which helps train vision models to more accurately identify individual elements in images. By adding annotations to images, the computer can understand the semantics and context behind the images, thereby improving the ability to understand and analyze the image content. Image annotation has a wide range of applications, covering many fields, such as computer vision, natural language processing, and graph vision models. It has a wide range of applications, such as assisting vehicles in identifying obstacles on the road, and helping in the detection and diagnosis of diseases through medical image recognition. . This article mainly recommends some better open source and free image annotation tools. 1.Makesens

In the fields of machine learning and data science, model interpretability has always been a focus of researchers and practitioners. With the widespread application of complex models such as deep learning and ensemble methods, understanding the model's decision-making process has become particularly important. Explainable AI|XAI helps build trust and confidence in machine learning models by increasing the transparency of the model. Improving model transparency can be achieved through methods such as the widespread use of multiple complex models, as well as the decision-making processes used to explain the models. These methods include feature importance analysis, model prediction interval estimation, local interpretability algorithms, etc. Feature importance analysis can explain the decision-making process of a model by evaluating the degree of influence of the model on the input features. Model prediction interval estimate

In layman’s terms, a machine learning model is a mathematical function that maps input data to a predicted output. More specifically, a machine learning model is a mathematical function that adjusts model parameters by learning from training data to minimize the error between the predicted output and the true label. There are many models in machine learning, such as logistic regression models, decision tree models, support vector machine models, etc. Each model has its applicable data types and problem types. At the same time, there are many commonalities between different models, or there is a hidden path for model evolution. Taking the connectionist perceptron as an example, by increasing the number of hidden layers of the perceptron, we can transform it into a deep neural network. If a kernel function is added to the perceptron, it can be converted into an SVM. this one

This article will introduce how to effectively identify overfitting and underfitting in machine learning models through learning curves. Underfitting and overfitting 1. Overfitting If a model is overtrained on the data so that it learns noise from it, then the model is said to be overfitting. An overfitted model learns every example so perfectly that it will misclassify an unseen/new example. For an overfitted model, we will get a perfect/near-perfect training set score and a terrible validation set/test score. Slightly modified: "Cause of overfitting: Use a complex model to solve a simple problem and extract noise from the data. Because a small data set as a training set may not represent the correct representation of all data." 2. Underfitting Heru

In the 1950s, artificial intelligence (AI) was born. That's when researchers discovered that machines could perform human-like tasks, such as thinking. Later, in the 1960s, the U.S. Department of Defense funded artificial intelligence and established laboratories for further development. Researchers are finding applications for artificial intelligence in many areas, such as space exploration and survival in extreme environments. Space exploration is the study of the universe, which covers the entire universe beyond the earth. Space is classified as an extreme environment because its conditions are different from those on Earth. To survive in space, many factors must be considered and precautions must be taken. Scientists and researchers believe that exploring space and understanding the current state of everything can help understand how the universe works and prepare for potential environmental crises

Common challenges faced by machine learning algorithms in C++ include memory management, multi-threading, performance optimization, and maintainability. Solutions include using smart pointers, modern threading libraries, SIMD instructions and third-party libraries, as well as following coding style guidelines and using automation tools. Practical cases show how to use the Eigen library to implement linear regression algorithms, effectively manage memory and use high-performance matrix operations.

Translator | Reviewed by Li Rui | Chonglou Artificial intelligence (AI) and machine learning (ML) models are becoming increasingly complex today, and the output produced by these models is a black box – unable to be explained to stakeholders. Explainable AI (XAI) aims to solve this problem by enabling stakeholders to understand how these models work, ensuring they understand how these models actually make decisions, and ensuring transparency in AI systems, Trust and accountability to address this issue. This article explores various explainable artificial intelligence (XAI) techniques to illustrate their underlying principles. Several reasons why explainable AI is crucial Trust and transparency: For AI systems to be widely accepted and trusted, users need to understand how decisions are made

The application potential of Go language in the field of machine learning is huge. Its advantages are: Concurrency: It supports parallel programming and is suitable for computationally intensive operations in machine learning tasks. Efficiency: The garbage collector and language features ensure that the code is efficient, even when processing large data sets. Ease of use: The syntax is concise, making it easy to learn and write machine learning applications.
