Home > Database > Mysql Tutorial > body text

In-depth analysis of B-tree algorithm and its Python implementation

王林
Release: 2024-01-22 20:36:10
forward
1204 people have browsed it

B树算法详解 Python实现B树

B树,和二叉搜索树很像,每个节点可以包含多个节点,但B树的子节点可以超过两个。

B树数据结构

B树可以在单个节点中存储许多键,并且可以有多个子节点。

B树搜索算法

BtreeSearch(x,k)
  i=1
  while i≤n[x]and k≥keyi[x]
      do i=i+1
  if i n[x]and k=keyi[x]
      then return(x,i)
  if leaf[x]
      then return NIL
  else
      return BtreeSearch(ci[x],k)
Copy after login

B树搜索示例

指定K=17,从根节点开始,将k与根进行比较。

ķ>11,转到根的右子节点;比较k和16,因为>16,比较k和下一个键18。

由于k<18,k介于16和18之间。在16的右子节点或18左子节点中搜索,k被发现。

Python实现B树

class BTreeNode:
   def __init__(self,leaf=False):
   self.leaf=leaf
   self.keys=[]
   self.child=[]

class BTree:
   def __init__(self,t):
   self.root=BTreeNode(True)
   self.t=t

def insert(self,k):
   root=self.root
   if len(root.keys)==(2*self.t)-1:
      temp=BTreeNode()
      self.root=temp
      temp.child.insert(0,root)
      self.split_child(temp,0)
      self.insert_non_full(temp,k)
   else:
      self.insert_non_full(root,k)

def insert_non_full(self,x,k):
   i=len(x.keys)-1
   if x.leaf:
      x.keys.append((None,None))
      while i&gt;=0 and k[0]&lt;x.keys<i>[0]:
         x.keys[i+1]=x.keys<i>
         i-=1
      x.keys[i+1]=k
   else:
      while i&gt;=0 and k[0]&lt;x.keys<i>[0]:
      i-=1
      i+=1
   if len(x.child<i>.keys)==(2*self.t)-1:
      self.split_child(x,i)
   if k[0]&gt;x.keys<i>[0]:
      i+=1
   self.insert_non_full(x.child<i>,k)

def split_child(self,x,i):
   t=self.t
   y=x.child<i>
   z=BTreeNode(y.leaf)
   x.child.insert(i+1,z)
   x.keys.insert(i,y.keys[t-1])
   z.keys=y.keys[t:(2*t)-1]
   y.keys=y.keys[0:t-1]
   if not y.leaf:
      z.child=y.child[t:2*t]
      y.child=y.child[0:t-1]

def print_tree(self,x,l=0):
   print("Level",l,"",len(x.keys),end=":")
   for i in x.keys:
   print(i,end="")
   print()
   l+=1
   if len(x.child)&gt;0:
      for i in x.child:
         self.print_tree(i,l)

def search_key(self,k,x=None):
   if x is not None:
      i=0
      while i&lt;len(x.keys)and k&gt;x.keys<i>[0]:
      i+=1
   if i&lt;len(x.keys)and k==x.keys<i>[0]:
      return(x,i)
   elif x.leaf:
      return None
   else:
      return self.search_key(k,x.child<i>)
   else:
      return self.search_key(k,self.root)

def main():
   B=BTree(3)
   for i in range(10):
        B.insert((i,2*i))

   B.print_tree(B.root)

   if B.search_key(8)is not None:
      print("\nFound")
   else:
      print("\nNot Found")

if __name__==&#x27;__main__&#x27;:
   main()
Copy after login

The above is the detailed content of In-depth analysis of B-tree algorithm and its Python implementation. For more information, please follow other related articles on the PHP Chinese website!

Related labels:
source:163.com
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template
About us Disclaimer Sitemap
php.cn:Public welfare online PHP training,Help PHP learners grow quickly!