The 9 most commonly used Python libraries for machine learning
机器学习是一种编程技术,让计算机能够从多种数据中自动学习。过去,开发人员需要手动编写算法来进行机器学习任务。而现在,使用各种Python库,我们能够更高效地完成机器学习任务。这种技术的发展使得机器学习变得更加普遍和易于实施。
机器学习中使用的Python库
Numpy
NumPy是一个强大的Python库,专门用于处理大型多维数组和矩阵。它提供了丰富的高级数学函数,非常适用于机器学习中的基础计算。其中包括线性代数、傅里叶变换和随机数功能等等。
相应代码
import numpy as np x=np.array([[1,2],[3,4]]) y=np.array([[5,6],[7,8]]) v=np.array([9,10]) w=np.array([11,12]) print(np.dot(v,w),"\n") print(np.dot(x,v),"\n") print(np.dot(x,y))
Scipy
SciPy在机器学习爱好者中非常受欢迎,因为它包含优化、线性代数、集成和统计等模块,SciPy对于图像处理也非常有用。
SciPy库和SciPy堆栈之间存在差异,SciPy是构成SciPy堆栈的核心包之一。
from scipy.misc import imread,imsave,imresize img=imread('D:/Programs/cat.jpg')#path of the image print(img.dtype,img.shape) img_tint=img*[1,0.45,0.3] imsave('D:/Programs/cat_tinted.jpg',img_tint) img_tint_resize=imresize(img_tint,(300,300)) imsave('D:/Programs/cat_tinted_resized.jpg',img_tint_resize)
Scikit-learn
Scikit-learn是用于经典ML算法库之一。它是基于NumPy和SciPy库建立的。Scikit-learn支持大多数有监督和无监督学习算法。Scikit-learn还可用于数据挖掘和数据分析。
from sklearn import datasets from sklearn import metrics from sklearn.tree import DecisionTreeClassifier dataset=datasets.load_iris() model=DecisionTreeClassifier() model.fit(dataset.data,dataset.target) print(model) expected=dataset.target predicted=model.predict(dataset.data) print(metrics.classification_report(expected,predicted)) print(metrics.confusion_matrix(expected,predicted))
Theano
机器学习基本上是数学和统计学。Theano是一个流行的Python库,以有效的方式定义、评估和优化涉及多维数组的数学表达式。它是通过优化CPU和GPU的利用率来实现的。它广泛用于单元测试和自我验证,以检测和诊断不同类型的错误。
Theano是一个非常强大的库,无论是大规模计算密集型科学项目,还是个人都能被应用到项目中。
import theano import theano.tensor as T x=T.dmatrix('x') s=1/(1+T.exp(-x)) logistic=theano.function([x],s) logistic([[0,1],[-1,-2]])
TensorFlow
TensorFlow是一个非常流行的高性能数值计算开源库,由谷歌的Google Brain团队开发。顾名思义,Tensorflow是一个涉及定义和运行涉及张量的计算的框架。它可以训练和运行可用于开发多个AI应用程序的深度神经网络。TensorFlow广泛应用于深度学习研究和应用领域。
import tensorflow as tf x1=tf.constant([1,2,3,4]) x2=tf.constant([5,6,7,8]) result=tf.multiply(x1,x2) sess=tf.Session() print(sess.run(result)) sess.close()
Keras
Keras是一个非常流行的Python机器学习库。提供了许多用于探索、组合和过滤数据的内置方法。能够在TensorFlow、CNTK或Theano之上运行。它可以在CPU和GPU上无缝运行。
Keras的优点之一是它可以轻松快速地进行原型设计。Keras让ML初学者真正能够构建和设计神经网络。
PyTorch
PyTorch是一个流行的基于Torch的Python开源机器学习库,用C语言实现,并在Lua中封装。它有很多工具和库可供选择,支持计算机视觉、自然语言处理(NLP)和更多ML程序。它允许开发人员使用GPU加速对张量执行计算,还有助于创建计算图。
import torch dtype=torch.float device=torch.device("cpu") N,D_in,H,D_out=64,1000,100,10 x=torch.random(N,D_in,device=device,dtype=dtype) y=torch.random(N,D_out,device=device,dtype=dtype) w1=torch.random(D_in,H,device=device,dtype=dtype) w2=torch.random(H,D_out,device=device,dtype=dtype) learning_rate=1e-6 for t in range(500): h=x.mm(w1) h_relu=h.clamp(min=0) y_pred=h_relu.mm(w2) loss=(y_pred-y).pow(2).sum().item() print(t,loss) grad_y_pred=2.0*(y_pred-y) grad_w2=h_relu.t().mm(grad_y_pred) grad_h_relu=grad_y_pred.mm(w2.t()) grad_h=grad_h_relu.clone() grad_h[h<0]=0 grad_w1=x.t().mm(grad_h) w1-=learning_rate*grad_w1 w2-=learning_rate*grad_w2
Pandas
Pandas是一个流行的Python数据分析库。它与机器学习没有直接关系。众所周知,数据集必须在训练前准备好。在这种情况下,Pandas就派上用场了,因为它是专门为数据提取和准备而开发的。它为数据分析提供了高级数据结构和各种工具。它提供了许多用于分组、组合和过滤数据的内置方法。
import pandas as pd data={"country":["Brazil","Russia","India","China","South Africa"], "capital":["Brasilia","Moscow","New Delhi","Beijing","Pretoria"], "area":[8.516,17.10,3.286,9.597,1.221], "population":[200.4,143.5,1252,1357,52.98]} data_table=pd.DataFrame(data) print(data_table)
Matplotlib
Matplotlib是一个非常流行的用于数据可视化的Python库。和Pandas一样,它与机器学习没有直接关系。
但它在可视化方面非常有用,作为2D绘图库,可以创建2D图形和绘图,提供了控制线条样式、字体属性、格式化轴等的功能。
用于数据可视化的各种图形和绘图,即直方图、错误图表、条形聊天等均可以通过Matplotlib实现。
import matplotlib.pyplot as plt import numpy as np x=np.linspace(0,10,100) plt.plot(x,x,label='linear') plt.legend() plt.show()
The above is the detailed content of The 9 most commonly used Python libraries for machine learning. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Image annotation is the process of associating labels or descriptive information with images to give deeper meaning and explanation to the image content. This process is critical to machine learning, which helps train vision models to more accurately identify individual elements in images. By adding annotations to images, the computer can understand the semantics and context behind the images, thereby improving the ability to understand and analyze the image content. Image annotation has a wide range of applications, covering many fields, such as computer vision, natural language processing, and graph vision models. It has a wide range of applications, such as assisting vehicles in identifying obstacles on the road, and helping in the detection and diagnosis of diseases through medical image recognition. . This article mainly recommends some better open source and free image annotation tools. 1.Makesens

In the fields of machine learning and data science, model interpretability has always been a focus of researchers and practitioners. With the widespread application of complex models such as deep learning and ensemble methods, understanding the model's decision-making process has become particularly important. Explainable AI|XAI helps build trust and confidence in machine learning models by increasing the transparency of the model. Improving model transparency can be achieved through methods such as the widespread use of multiple complex models, as well as the decision-making processes used to explain the models. These methods include feature importance analysis, model prediction interval estimation, local interpretability algorithms, etc. Feature importance analysis can explain the decision-making process of a model by evaluating the degree of influence of the model on the input features. Model prediction interval estimate

In layman’s terms, a machine learning model is a mathematical function that maps input data to a predicted output. More specifically, a machine learning model is a mathematical function that adjusts model parameters by learning from training data to minimize the error between the predicted output and the true label. There are many models in machine learning, such as logistic regression models, decision tree models, support vector machine models, etc. Each model has its applicable data types and problem types. At the same time, there are many commonalities between different models, or there is a hidden path for model evolution. Taking the connectionist perceptron as an example, by increasing the number of hidden layers of the perceptron, we can transform it into a deep neural network. If a kernel function is added to the perceptron, it can be converted into an SVM. this one

This article will introduce how to effectively identify overfitting and underfitting in machine learning models through learning curves. Underfitting and overfitting 1. Overfitting If a model is overtrained on the data so that it learns noise from it, then the model is said to be overfitting. An overfitted model learns every example so perfectly that it will misclassify an unseen/new example. For an overfitted model, we will get a perfect/near-perfect training set score and a terrible validation set/test score. Slightly modified: "Cause of overfitting: Use a complex model to solve a simple problem and extract noise from the data. Because a small data set as a training set may not represent the correct representation of all data." 2. Underfitting Heru

In the 1950s, artificial intelligence (AI) was born. That's when researchers discovered that machines could perform human-like tasks, such as thinking. Later, in the 1960s, the U.S. Department of Defense funded artificial intelligence and established laboratories for further development. Researchers are finding applications for artificial intelligence in many areas, such as space exploration and survival in extreme environments. Space exploration is the study of the universe, which covers the entire universe beyond the earth. Space is classified as an extreme environment because its conditions are different from those on Earth. To survive in space, many factors must be considered and precautions must be taken. Scientists and researchers believe that exploring space and understanding the current state of everything can help understand how the universe works and prepare for potential environmental crises

Common challenges faced by machine learning algorithms in C++ include memory management, multi-threading, performance optimization, and maintainability. Solutions include using smart pointers, modern threading libraries, SIMD instructions and third-party libraries, as well as following coding style guidelines and using automation tools. Practical cases show how to use the Eigen library to implement linear regression algorithms, effectively manage memory and use high-performance matrix operations.

Translator | Reviewed by Li Rui | Chonglou Artificial intelligence (AI) and machine learning (ML) models are becoming increasingly complex today, and the output produced by these models is a black box – unable to be explained to stakeholders. Explainable AI (XAI) aims to solve this problem by enabling stakeholders to understand how these models work, ensuring they understand how these models actually make decisions, and ensuring transparency in AI systems, Trust and accountability to address this issue. This article explores various explainable artificial intelligence (XAI) techniques to illustrate their underlying principles. Several reasons why explainable AI is crucial Trust and transparency: For AI systems to be widely accepted and trusted, users need to understand how decisions are made

The application potential of Go language in the field of machine learning is huge. Its advantages are: Concurrency: It supports parallel programming and is suitable for computationally intensive operations in machine learning tasks. Efficiency: The garbage collector and language features ensure that the code is efficient, even when processing large data sets. Ease of use: The syntax is concise, making it easy to learn and write machine learning applications.
