Table of Contents
Reconstruction method
Reconstruction steps
Example code
Home Technology peripherals AI Application of AI technology in image super-resolution reconstruction

Application of AI technology in image super-resolution reconstruction

Jan 23, 2024 am 08:06 AM
AI computer vision Image Processing

Application of AI technology in image super-resolution reconstruction

Super-resolution image reconstruction is the use of deep learning techniques, such as convolutional neural networks (CNN) and generative adversarial networks (GAN), to generate high-resolution images from low-resolution images the process of. The goal of this method is to improve the quality and detail of images by converting low-resolution images into high-resolution images. This technology has wide applications in many fields, such as medical imaging, surveillance cameras, satellite images, etc. Through super-resolution image reconstruction, we can obtain clearer and more detailed images, which helps to more accurately analyze and identify targets and features in images.

Reconstruction method

Super-resolution image reconstruction methods can usually be divided into two categories: interpolation-based methods and deep learning-based methods .

1) Interpolation-based method

The interpolation-based super-resolution image reconstruction method is a simple and commonly used technology. It generates high-resolution images from low-resolution images by using interpolation algorithms. Interpolation algorithms estimate pixel values ​​in a high-resolution image based on pixel values ​​in a low-resolution image. Common interpolation algorithms include bilinear interpolation, bicubic interpolation and Lanczos interpolation. These algorithms can use information from surrounding pixels to estimate pixel values, thereby improving image detail and clarity. By choosing an appropriate interpolation algorithm, different degrees of image enhancement and reconstruction effects can be achieved. However, interpolation-based methods also have some limitations, such as the inability to recover missing details and structures, and the possibility of causing image blur or distortion. Therefore, in practical applications, it is necessary to comprehensively consider the effect and calculation of the algorithm

2) Method based on deep learning

Based on deep learning The method is a more advanced super-resolution image reconstruction method. This approach typically uses deep learning techniques such as convolutional neural networks (CNN) or generative adversarial networks (GAN) to generate high-resolution images from low-resolution images. These deep learning models can learn mapping relationships between images from large datasets and exploit these relationships to generate high-resolution images.

Convolutional neural network (CNN) is a commonly used method based on deep learning. This method usually uses a network composed of convolutional layers, pooling layers, and fully connected layers to model the mapping relationship between images. CNN models usually include an encoder and a decoder, where the encoder layer converts low-resolution images into feature vectors, and the decoder layer converts feature vectors into high-resolution images.

Generative Adversarial Network (GAN) is another commonly used method based on deep learning. This approach uses two deep learning models: generator and discriminator. The generator model converts a low-resolution image into a high-resolution image and attempts to trick the discriminator model into being unable to distinguish between the generated image and the real high-resolution image. The discriminator model attempts to distinguish between images generated by the generator and real high-resolution images. By continuously iteratively training these two models, the generator model can generate higher quality high-resolution images.

Reconstruction steps

The steps of super-resolution image reconstruction usually include the following steps:

1. Collection and preparation of data sets

In order to train the super-resolution image reconstruction model, a large number of low-resolution image and high-resolution image pairs need to be collected. These image pairs require preprocessing such as cropping, resizing, and normalizing.

2. Model selection and training

Selecting suitable models and training them are key steps for super-resolution image reconstruction. One can choose between interpolation-based methods or deep learning-based methods. Deep learning-based methods typically require larger data sets and longer training times. During the training process, an appropriate loss function needs to be selected to evaluate the performance of the model, such as mean square error (MSE) or perceptual loss (Perceptual Loss).

3. Optimization and adjustment of the model

After training the model, the model needs to be adjusted and optimized to improve its performance. You can try different hyperparameters and optimization algorithms and use a validation set to evaluate the model's performance.

4. Testing and Evaluation

Use the test set to test the performance of the model and evaluate the generated high-resolution images. Various evaluation metrics can be used, such as Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Perceptual Quality Index (PI), etc.

Example code

The following is a simple deep learning-based super-resolution image reconstruction example, implemented using TensorFlow and Keras. In this example, we will use a CNN-based model to generate high-resolution images from low-resolution images.

1. Preparation of data set

We will use the DIV2K data set, which contains multiple image pairs of different resolutions . We will use 800 of these image pairs for training and 100 image pairs for testing. When preparing the dataset, we need to reduce the low-resolution image to 1/4 before saving it with the original high-resolution image.

2. Model selection and training

We will use a CNN-based model to achieve super-resolution image reconstruction. The model includes an encoder and a decoder, where the encoder includes multiple convolutional and pooling layers to convert low-resolution images into feature vectors. The decoder includes multiple deconvolution layers and upsampling layers to convert feature vectors into high-resolution images.

The following is the implementation code of the model:

from tensorflow.keras.layers import Input, Conv2D, UpSampling2D
from tensorflow.keras.models import Model

def build_model():
    # 输入层
    inputs = Input(shape=(None, None, 3))

    # 编码器
    x = Conv2D(64, 3, activation='relu', padding='same')(inputs)
    x = Conv2D(64, 3, activation='relu', padding='same')(x)
    x = Conv2D(64, 3, activation='relu', padding='same')(x)
    x = Conv2D(64, 3, activation='relu', padding='same')(x)

    # 解码器
    x = Conv2D(64, 3, activation='relu', padding='same')(x)
    x = Conv2D(64, 3, activation='relu', padding='same')(x)
    x = Conv2D(64, 3, activation='relu', padding='same')(x)
    x = Conv2D(64, 3, activation='relu', padding='same')(x)
    x = UpSampling2D()(x)
    x = Conv2D(3, 3, activation='sigmoid', padding='same')(x)

    # 构建模型
    model = Model(inputs=inputs, outputs=x)

    return model
Copy after login

3. Optimization and adjustment of the model

We will use the mean square Error (MSE) as the loss function, and the Adam optimizer is used to train the model. During the training process, we will use the EarlyStopping callback function to avoid overfitting and save the model as an h5 file.

The following is the optimization and tuning code of the model:

from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
from tensorflow.keras.optimizers import Adam

# 构建模型
model = build_model()

# 编译模型
model.compile(optimizer=Adam(lr=1e-4), loss='mse')

# 设置回调函数
early_stopping = EarlyStopping(monitor='val_loss', patience=5)
model_checkpoint = ModelCheckpoint('model.h5', monitor='val_loss',
                                    save_best_only=True, save_weights_only=True)

# 训练模型
model.fit(train_X, train_Y, batch_size=16, epochs=100, validation_split=0.1,
          callbacks=[early_stopping, model_checkpoint])
Copy after login

4. Testing and evaluation

We will use the test set To test the performance of the model, and calculate the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) to evaluate the quality of the generated high-resolution images.

The following is the test and evaluation code:

from skimage.metrics import peak_signal_noise_ratio, structural_similarity

# 加载模型
model.load_weights('model.h5')

# 测试模型
test_Y_pred = model.predict(test_X)

# 计算 PSNR 和 SSIM
psnr = peak_signal_noise_ratio(test_Y, test_Y_pred, data_range=1.0)
ssim =structural_similarity(test_Y, test_Y_pred, multichannel=True)

print('PSNR:', psnr)
print('SSIM:', ssim)
Copy after login

It should be noted that this is just a simple example, and actual applications may require more complex models and larger data set to obtain better results.

The above is the detailed content of Application of AI technology in image super-resolution reconstruction. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Bytedance Cutting launches SVIP super membership: 499 yuan for continuous annual subscription, providing a variety of AI functions Bytedance Cutting launches SVIP super membership: 499 yuan for continuous annual subscription, providing a variety of AI functions Jun 28, 2024 am 03:51 AM

This site reported on June 27 that Jianying is a video editing software developed by FaceMeng Technology, a subsidiary of ByteDance. It relies on the Douyin platform and basically produces short video content for users of the platform. It is compatible with iOS, Android, and Windows. , MacOS and other operating systems. Jianying officially announced the upgrade of its membership system and launched a new SVIP, which includes a variety of AI black technologies, such as intelligent translation, intelligent highlighting, intelligent packaging, digital human synthesis, etc. In terms of price, the monthly fee for clipping SVIP is 79 yuan, the annual fee is 599 yuan (note on this site: equivalent to 49.9 yuan per month), the continuous monthly subscription is 59 yuan per month, and the continuous annual subscription is 499 yuan per year (equivalent to 41.6 yuan per month) . In addition, the cut official also stated that in order to improve the user experience, those who have subscribed to the original VIP

Context-augmented AI coding assistant using Rag and Sem-Rag Context-augmented AI coding assistant using Rag and Sem-Rag Jun 10, 2024 am 11:08 AM

Improve developer productivity, efficiency, and accuracy by incorporating retrieval-enhanced generation and semantic memory into AI coding assistants. Translated from EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, author JanakiramMSV. While basic AI programming assistants are naturally helpful, they often fail to provide the most relevant and correct code suggestions because they rely on a general understanding of the software language and the most common patterns of writing software. The code generated by these coding assistants is suitable for solving the problems they are responsible for solving, but often does not conform to the coding standards, conventions and styles of the individual teams. This often results in suggestions that need to be modified or refined in order for the code to be accepted into the application

Can fine-tuning really allow LLM to learn new things: introducing new knowledge may make the model produce more hallucinations Can fine-tuning really allow LLM to learn new things: introducing new knowledge may make the model produce more hallucinations Jun 11, 2024 pm 03:57 PM

Large Language Models (LLMs) are trained on huge text databases, where they acquire large amounts of real-world knowledge. This knowledge is embedded into their parameters and can then be used when needed. The knowledge of these models is "reified" at the end of training. At the end of pre-training, the model actually stops learning. Align or fine-tune the model to learn how to leverage this knowledge and respond more naturally to user questions. But sometimes model knowledge is not enough, and although the model can access external content through RAG, it is considered beneficial to adapt the model to new domains through fine-tuning. This fine-tuning is performed using input from human annotators or other LLM creations, where the model encounters additional real-world knowledge and integrates it

Seven Cool GenAI & LLM Technical Interview Questions Seven Cool GenAI & LLM Technical Interview Questions Jun 07, 2024 am 10:06 AM

To learn more about AIGC, please visit: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou is different from the traditional question bank that can be seen everywhere on the Internet. These questions It requires thinking outside the box. Large Language Models (LLMs) are increasingly important in the fields of data science, generative artificial intelligence (GenAI), and artificial intelligence. These complex algorithms enhance human skills and drive efficiency and innovation in many industries, becoming the key for companies to remain competitive. LLM has a wide range of applications. It can be used in fields such as natural language processing, text generation, speech recognition and recommendation systems. By learning from large amounts of data, LLM is able to generate text

To provide a new scientific and complex question answering benchmark and evaluation system for large models, UNSW, Argonne, University of Chicago and other institutions jointly launched the SciQAG framework To provide a new scientific and complex question answering benchmark and evaluation system for large models, UNSW, Argonne, University of Chicago and other institutions jointly launched the SciQAG framework Jul 25, 2024 am 06:42 AM

Editor |ScienceAI Question Answering (QA) data set plays a vital role in promoting natural language processing (NLP) research. High-quality QA data sets can not only be used to fine-tune models, but also effectively evaluate the capabilities of large language models (LLM), especially the ability to understand and reason about scientific knowledge. Although there are currently many scientific QA data sets covering medicine, chemistry, biology and other fields, these data sets still have some shortcomings. First, the data form is relatively simple, most of which are multiple-choice questions. They are easy to evaluate, but limit the model's answer selection range and cannot fully test the model's ability to answer scientific questions. In contrast, open-ended Q&A

Five schools of machine learning you don't know about Five schools of machine learning you don't know about Jun 05, 2024 pm 08:51 PM

Machine learning is an important branch of artificial intelligence that gives computers the ability to learn from data and improve their capabilities without being explicitly programmed. Machine learning has a wide range of applications in various fields, from image recognition and natural language processing to recommendation systems and fraud detection, and it is changing the way we live. There are many different methods and theories in the field of machine learning, among which the five most influential methods are called the "Five Schools of Machine Learning". The five major schools are the symbolic school, the connectionist school, the evolutionary school, the Bayesian school and the analogy school. 1. Symbolism, also known as symbolism, emphasizes the use of symbols for logical reasoning and expression of knowledge. This school of thought believes that learning is a process of reverse deduction, through existing

SOTA performance, Xiamen multi-modal protein-ligand affinity prediction AI method, combines molecular surface information for the first time SOTA performance, Xiamen multi-modal protein-ligand affinity prediction AI method, combines molecular surface information for the first time Jul 17, 2024 pm 06:37 PM

Editor | KX In the field of drug research and development, accurately and effectively predicting the binding affinity of proteins and ligands is crucial for drug screening and optimization. However, current studies do not take into account the important role of molecular surface information in protein-ligand interactions. Based on this, researchers from Xiamen University proposed a novel multi-modal feature extraction (MFE) framework, which for the first time combines information on protein surface, 3D structure and sequence, and uses a cross-attention mechanism to compare different modalities. feature alignment. Experimental results demonstrate that this method achieves state-of-the-art performance in predicting protein-ligand binding affinities. Furthermore, ablation studies demonstrate the effectiveness and necessity of protein surface information and multimodal feature alignment within this framework. Related research begins with "S

Laying out markets such as AI, GlobalFoundries acquires Tagore Technology's gallium nitride technology and related teams Laying out markets such as AI, GlobalFoundries acquires Tagore Technology's gallium nitride technology and related teams Jul 15, 2024 pm 12:21 PM

According to news from this website on July 5, GlobalFoundries issued a press release on July 1 this year, announcing the acquisition of Tagore Technology’s power gallium nitride (GaN) technology and intellectual property portfolio, hoping to expand its market share in automobiles and the Internet of Things. and artificial intelligence data center application areas to explore higher efficiency and better performance. As technologies such as generative AI continue to develop in the digital world, gallium nitride (GaN) has become a key solution for sustainable and efficient power management, especially in data centers. This website quoted the official announcement that during this acquisition, Tagore Technology’s engineering team will join GLOBALFOUNDRIES to further develop gallium nitride technology. G

See all articles