Home Operation and Maintenance Linux Operation and Maintenance Exploring the Linux cache mechanism: an in-depth analysis revealing its operating principles and classification

Exploring the Linux cache mechanism: an in-depth analysis revealing its operating principles and classification

Jan 23, 2024 am 09:30 AM
working principle Classification

Exploring the Linux cache mechanism: an in-depth analysis revealing its operating principles and classification

In-depth analysis of the Linux cache mechanism: exploring its working principle and classification

Introduction:
Linux is a widely used operating system, and its performance optimization has always been One of the main focuses of developers. As one of the key technologies to improve system performance, the caching mechanism plays an important role in Linux systems. This article will provide an in-depth analysis of the Linux caching mechanism, explore its working principles and classification, and provide specific code examples.

1. The working principle of the Linux cache mechanism
The Linux cache mechanism plays an important role in memory management. Its main working principles are as follows:

  1. Reading of cached data :
    When an application needs to read a file, the operating system will first check whether the cache data for the file already exists in the cache. If it exists, the data is read directly from the cache, avoiding the overhead of accessing the disk. If there is no data for the file in the cache, the operating system reads the file from disk into the cache and returns it to the application for use.
  2. Writing of cached data:
    When an application needs to write to a file, the operating system will first write the data into the cache and mark it as "dirty" data. The operating system writes "dirty" data back to disk only when the system is low on memory or when the cached data is needed by another process.
  3. Replacement of cached data:
    When the system memory is insufficient, the operating system will select some cached data for replacement according to a certain algorithm to make room for new data. Replacement algorithms are typically evaluated and selected based on the frequency and importance of cached data being accessed.

2. Classification of Linux caching mechanism
Linux caching mechanism can be divided into the following categories according to the type and purpose of cached data:

  1. File Cache (Page Cache ):
    File cache is the most common type of cache in Linux, which caches file data in page units. When an application needs to read a file, the operating system first checks to see if a page for the file already exists in the file cache. If it exists, the data is read directly from the cache; if it does not exist, the file data needs to be read from the disk into the cache. Page caching will reduce read and write operations to the disk, thereby increasing the speed of file access.
  2. Directory cache (dentry Cache):
    Directory cache is mainly used to cache information related to directories in the file system, such as the inode number of the directory, the file name corresponding to the directory entry, etc. It can reduce the overhead when applications perform directory operations in the file system and speed up file system access.
  3. Buffer Cache:
    The block cache is mainly used to cache block data in the file system, such as the super block, index node and data block of the file system. It can provide random access to the disk, thereby improving file system performance.
  4. Network cache (Socket Buffer Cache):
    The network cache is used to cache network data, such as data packets, socket buffers, etc. in the TCP/IP protocol stack. It can effectively reduce the data transmission overhead between applications and network devices and improve the efficiency of network transmission.

3. Code examples of Linux caching mechanism
The following are some specific code examples used by the Linux caching mechanism:

  1. File cache reading:

    #include <stdio.h>
    #include <fcntl.h>
    #include <unistd.h>
    
    int main() {
     int fd = open("test.txt", O_RDONLY);
     char buf[1024];
     ssize_t n = read(fd, buf, sizeof(buf));
     close(fd);
     return 0;
    }
    Copy after login
  2. File cache writes:

    #include <stdio.h>
    #include <fcntl.h>
    #include <unistd.h>
    
    int main() {
     int fd = open("test.txt", O_WRONLY | O_CREAT, 0644);
     char buf[1024] = "Hello, world!";
     ssize_t n = write(fd, buf, sizeof(buf));
     close(fd);
     return 0;
    }
    Copy after login
  3. Directory cache reads:

    #include <stdio.h>
    #include <dirent.h>
    
    int main() {
     DIR* dir = opendir("/path/to/dir");
     struct dirent* entry;
    
     while ((entry = readdir(dir)) != NULL) {
         printf("%s
    ", entry->d_name);
     }
    
     closedir(dir);
     return 0;
    }
    Copy after login

Conclusion :
Through an in-depth analysis of the Linux cache mechanism, we understand its working principle and classification. By properly utilizing and managing the cache mechanism, we can effectively improve system performance and response speed. I hope this article will help readers understand the Linux caching mechanism and application performance optimization.

Reference materials:
[1] Understanding the Linux Kernel, Third Edition, O'Reilly
[2] Linux kernel source code
[3] https://www.kernel. org/

The above is the detailed content of Exploring the Linux cache mechanism: an in-depth analysis revealing its operating principles and classification. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
Two Point Museum: All Exhibits And Where To Find Them
1 months ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

What is SOL coin? How does SOL coin work? What is SOL coin? How does SOL coin work? Mar 16, 2024 am 10:37 AM

Solana Blockchain and SOL Token Solana is a blockchain platform focused on providing high performance, security and scalability for decentralized applications (dApps). As the native asset of the Solana blockchain, SOL tokens are mainly used to pay transaction fees, pledge and participate in governance decisions. Solana’s unique features are its fast transaction confirmation times and high throughput, making it a favored choice among developers and users. Through SOL tokens, users can participate in various activities of the Solana ecosystem and jointly promote the development and progress of the platform. How Solana works Solana uses an innovative consensus mechanism called Proof of History (PoH) that is capable of efficiently processing thousands of transactions.

What is the architecture and working principle of Spring Data JPA? What is the architecture and working principle of Spring Data JPA? Apr 17, 2024 pm 02:48 PM

SpringDataJPA is based on the JPA architecture and interacts with the database through mapping, ORM and transaction management. Its repository provides CRUD operations, and derived queries simplify database access. Additionally, it uses lazy loading to only retrieve data when necessary, thus improving performance.

What is Polygon coin? How does Polygon coin work? What is Polygon coin? How does Polygon coin work? Mar 16, 2024 am 09:22 AM

Polygon: A multifunctional blockchain that builds the Ethereum ecosystem Polygon is a multifunctional blockchain platform built on Ethereum, formerly known as MaticNetwork. Its goal is to solve the scalability, high fees, and complexity issues in the Ethereum network. Polygon provides developers and users with a faster, cheaper, and simpler blockchain experience by providing scalability solutions. Here’s how Polygon works: Sidechain Network: Polygon creates a network of multiple sidechains. These sidechains run in parallel with the main Ethereum chain and can handle large volumes of transactions, thereby increasing overall network throughput. Plasma framework: Polygon utilizes the Plasma framework, which

What is VET coin? How does VET coin work? What is VET coin? How does VET coin work? Mar 16, 2024 am 11:40 AM

VET Coin: Blockchain-based IoT ecosystem VeChainThor (VET) is a platform based on blockchain technology that aims to enhance the Internet of Things (IoT) field by ensuring the credibility of data and enabling safe transfer of value. supply chain management and business processes. VET coin is the native token of the VeChainThor blockchain and has the following functions: Pay transaction fees: VET coins are used to pay transaction fees on the VeChainThor network, including data storage, smart contract execution and identity verification. Governance: VET token holders can participate in the governance of VeChainThor, including voting on platform upgrades and proposals. Incentives: VET coins are used to incentivize validators in the network to ensure the

What is SHIB coin? How does SHIB coin work? What is SHIB coin? How does SHIB coin work? Mar 17, 2024 am 08:49 AM

ShibaInu Coin: Dog-Inspired Cryptocurrency ShibaInu Coin (SHIB) is a decentralized cryptocurrency inspired by the iconic Shiba Inu emoji. The cryptocurrency was launched in August 2020 and aims to be an alternative to Dogecoin on the Ethereum network. Working Principle SHIB coin is a digital currency built on the Ethereum blockchain and complies with the ERC-20 token standard. It utilizes a decentralized consensus mechanism, Proof of Stake (PoS), which allows holders to stake their SHIB tokens to verify transactions and earn rewards for doing so. Key Features Huge supply: The initial supply of SHIB coins is 1,000 trillion coins, making it one of the largest cryptocurrencies in circulation. Low price: S

What is Algorand coin? How does Algorand coin work? What is Algorand coin? How does Algorand coin work? Mar 17, 2024 am 08:30 AM

Algorand: A blockchain platform based on pure Byzantine consensus protocol Algorand is a blockchain platform built on pure Byzantine consensus protocol and aims to provide efficient, secure and scalable blockchain solutions. The platform was founded in 2017 by MIT professor Silvio Micali. Working Principle The core of Algorand lies in its unique pure Byzantine consensus protocol, the Algorand consensus. This protocol allows nodes to achieve consensus in a trustless environment, even if there are malicious nodes in the network. Algorand consensus achieves this goal through a series of steps. Key generation: Each node generates a pair of public and private keys. Proposal phase: A randomly selected node proposes a new zone

What is Beam Coin? How does Beam Coin work? What is Beam Coin? How does Beam Coin work? Mar 15, 2024 pm 09:50 PM

Beam Coin: Privacy-Focused Cryptocurrency Beam Coin is a privacy-focused cryptocurrency designed to provide secure and anonymous transactions. It uses the MimbleWimble protocol, a blockchain technology that enhances user privacy by merging transactions and hiding the addresses of senders and receivers. The design concept of Beam Coin is to provide users with a digital currency option that ensures the confidentiality of transaction information. By adopting this protocol, users can conduct transactions with greater confidence without worrying about their personal privacy information being leaked. This privacy-preserving feature makes Beam Coin work. MimbleWimble protocol enhances privacy by: Transaction merging: It combines multiple transactions into

What is AR coin? How does AR coin work? What is AR coin? How does AR coin work? Mar 15, 2024 pm 07:25 PM

AR Coin: Digital currency based on augmented reality technology AR Coin is a digital currency that uses augmented reality technology to provide users with the experience of interacting with digital content, allowing them to create immersive experiences in the real world. How it works AR Coin works based on the following key concepts: Augmented Reality (AR): AR technology overlays digital information on the real world, allowing users to interact with virtual objects. Blockchain: Blockchain is a distributed ledger technology used to record and verify transactions. It provides security and transparency to AR coins. Smart Contracts: Smart contracts are codes stored on the blockchain that are used to automate specific operations. They play a vital role in the creation and management of AR coins. The workflow of AR coins is as follows: Create AR body

See all articles