Table of Contents
Commonly used dimensionality reduction techniques
Choose the right dimensionality reduction method
Recommended articles
Home Technology peripherals AI Common dimensionality reduction techniques and their concepts

Common dimensionality reduction techniques and their concepts

Jan 23, 2024 pm 02:00 PM
AI machine learning

Common dimensionality reduction techniques and their concepts

In today’s world, we are surrounded by vast amounts of data. Whether it’s social media or scientific experiments, data is everywhere. As technology continues to advance, it becomes easier to collect data, resulting in larger and more complex data sets. However, how to effectively process these data sets for application in modeling and analysis is where dimensionality reduction plays an important role.

Dimensionality reduction is to reduce the variables in the data set in order to retain as much information as possible. Simply put, the dimensionally reduced data set has fewer features but can still capture the essence of the data.

Commonly used dimensionality reduction techniques

There are many techniques for reducing the dimensionality of a data set, each with advantages and disadvantages. The following are commonly used techniques:

1) Feature selection

Feature selection is the selection of a part of the original features of the data set for modeling. Typically, we can accomplish this by ranking the correlation of features with the outcome variable or using statistical tests. Selected features will be used to build the model, while other features will be discarded.

2) Feature extraction

Feature extraction is to convert the original features into a set of new features to capture the essence of the data. Commonly used mathematical techniques are matrix factorization and kernel methods. New feature sets are available for modeling.

3) Principal component analysis (PCA)

Principal component analysis is a commonly used linear dimensionality reduction method by converting original features into a new set of orthogonal features, namely principal components ,to fulfill. These principal components capture the greatest variation in the data and can be used for modeling or visual analysis. Through principal component analysis, we can reduce the dimensionality of features and extract the most representative features, thereby simplifying the complexity of data analysis.

4)t-SNE (t-Distributed Stochastic Neighbor Embedding)

t-SNE is a nonlinear dimensionality reduction technology that is particularly effective for visualizing high-dimensional data. It involves mapping high-dimensional data to a low-dimensional space while preserving similar relationships between data points.

5) Linear Discriminant Analysis (LDA)

LDA is a dimensionality reduction technique that is particularly useful for classification problems. It involves finding linear combinations of features that maximize the separation between classes.

In general, these techniques can be used in conjunction with each other, depending on the specific requirements of the problem. It is important to choose the right technique based on the nature of the data and the modeling task.

Choose the right dimensionality reduction method

There are several considerations to keep in mind when choosing a dimensionality reduction technique. Here are some of the most important factors to consider:

1. Data type and structure

Different dimensionality reduction techniques are better suited for different types of data. For example, PCA is suitable for linear data, while t-SNE is more suitable for nonlinear data. It is important to consider the structure of your data and choose an appropriate technology.

2. Data dimensionality

When choosing dimensionality reduction technology, the dimensionality of the data is an important consideration. For very high-dimensional data, techniques such as PCA may be more appropriate, while for low-dimensional data, nonlinear techniques such as t-SNE may be more effective.

3. Expected results

When choosing a technology, the expected results of the analysis are also important. For example, if the goal is to cluster or visualize data, t-SNE may be the best choice, whereas if the goal is to identify the most important features, PCA may be more appropriate.

Once a technology is selected, it is important to evaluate its effectiveness. The following are some criteria for evaluating the effectiveness of dimensionality reduction methods:

1. Preserve the most important features

The most effective dimensionality reduction techniques are those that retain the most important features of the data while discarding the least important features Technology.

2. Preserve variance

Another important criterion is the ability of the technique to preserve the variance of the data. By retaining as much variance as possible, this technique provides a more accurate representation of the data.

3. Reproducibility

Reproducibility is important for evaluating the effectiveness of dimensionality reduction techniques. A good technique should produce consistent results across different data sets and different parameter settings.

  • The role of dimensionality reduction algorithm The advantages and disadvantages of dimensionality reduction algorithm
  • What is dimensionality reduction? Detailed explanation of the concept of dimensionality reduction in machine learning

The above is the detailed content of Common dimensionality reduction techniques and their concepts. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Bytedance Cutting launches SVIP super membership: 499 yuan for continuous annual subscription, providing a variety of AI functions Bytedance Cutting launches SVIP super membership: 499 yuan for continuous annual subscription, providing a variety of AI functions Jun 28, 2024 am 03:51 AM

This site reported on June 27 that Jianying is a video editing software developed by FaceMeng Technology, a subsidiary of ByteDance. It relies on the Douyin platform and basically produces short video content for users of the platform. It is compatible with iOS, Android, and Windows. , MacOS and other operating systems. Jianying officially announced the upgrade of its membership system and launched a new SVIP, which includes a variety of AI black technologies, such as intelligent translation, intelligent highlighting, intelligent packaging, digital human synthesis, etc. In terms of price, the monthly fee for clipping SVIP is 79 yuan, the annual fee is 599 yuan (note on this site: equivalent to 49.9 yuan per month), the continuous monthly subscription is 59 yuan per month, and the continuous annual subscription is 499 yuan per year (equivalent to 41.6 yuan per month) . In addition, the cut official also stated that in order to improve the user experience, those who have subscribed to the original VIP

Context-augmented AI coding assistant using Rag and Sem-Rag Context-augmented AI coding assistant using Rag and Sem-Rag Jun 10, 2024 am 11:08 AM

Improve developer productivity, efficiency, and accuracy by incorporating retrieval-enhanced generation and semantic memory into AI coding assistants. Translated from EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, author JanakiramMSV. While basic AI programming assistants are naturally helpful, they often fail to provide the most relevant and correct code suggestions because they rely on a general understanding of the software language and the most common patterns of writing software. The code generated by these coding assistants is suitable for solving the problems they are responsible for solving, but often does not conform to the coding standards, conventions and styles of the individual teams. This often results in suggestions that need to be modified or refined in order for the code to be accepted into the application

Seven Cool GenAI & LLM Technical Interview Questions Seven Cool GenAI & LLM Technical Interview Questions Jun 07, 2024 am 10:06 AM

To learn more about AIGC, please visit: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou is different from the traditional question bank that can be seen everywhere on the Internet. These questions It requires thinking outside the box. Large Language Models (LLMs) are increasingly important in the fields of data science, generative artificial intelligence (GenAI), and artificial intelligence. These complex algorithms enhance human skills and drive efficiency and innovation in many industries, becoming the key for companies to remain competitive. LLM has a wide range of applications. It can be used in fields such as natural language processing, text generation, speech recognition and recommendation systems. By learning from large amounts of data, LLM is able to generate text

Can fine-tuning really allow LLM to learn new things: introducing new knowledge may make the model produce more hallucinations Can fine-tuning really allow LLM to learn new things: introducing new knowledge may make the model produce more hallucinations Jun 11, 2024 pm 03:57 PM

Large Language Models (LLMs) are trained on huge text databases, where they acquire large amounts of real-world knowledge. This knowledge is embedded into their parameters and can then be used when needed. The knowledge of these models is "reified" at the end of training. At the end of pre-training, the model actually stops learning. Align or fine-tune the model to learn how to leverage this knowledge and respond more naturally to user questions. But sometimes model knowledge is not enough, and although the model can access external content through RAG, it is considered beneficial to adapt the model to new domains through fine-tuning. This fine-tuning is performed using input from human annotators or other LLM creations, where the model encounters additional real-world knowledge and integrates it

To provide a new scientific and complex question answering benchmark and evaluation system for large models, UNSW, Argonne, University of Chicago and other institutions jointly launched the SciQAG framework To provide a new scientific and complex question answering benchmark and evaluation system for large models, UNSW, Argonne, University of Chicago and other institutions jointly launched the SciQAG framework Jul 25, 2024 am 06:42 AM

Editor |ScienceAI Question Answering (QA) data set plays a vital role in promoting natural language processing (NLP) research. High-quality QA data sets can not only be used to fine-tune models, but also effectively evaluate the capabilities of large language models (LLM), especially the ability to understand and reason about scientific knowledge. Although there are currently many scientific QA data sets covering medicine, chemistry, biology and other fields, these data sets still have some shortcomings. First, the data form is relatively simple, most of which are multiple-choice questions. They are easy to evaluate, but limit the model's answer selection range and cannot fully test the model's ability to answer scientific questions. In contrast, open-ended Q&A

SOTA performance, Xiamen multi-modal protein-ligand affinity prediction AI method, combines molecular surface information for the first time SOTA performance, Xiamen multi-modal protein-ligand affinity prediction AI method, combines molecular surface information for the first time Jul 17, 2024 pm 06:37 PM

Editor | KX In the field of drug research and development, accurately and effectively predicting the binding affinity of proteins and ligands is crucial for drug screening and optimization. However, current studies do not take into account the important role of molecular surface information in protein-ligand interactions. Based on this, researchers from Xiamen University proposed a novel multi-modal feature extraction (MFE) framework, which for the first time combines information on protein surface, 3D structure and sequence, and uses a cross-attention mechanism to compare different modalities. feature alignment. Experimental results demonstrate that this method achieves state-of-the-art performance in predicting protein-ligand binding affinities. Furthermore, ablation studies demonstrate the effectiveness and necessity of protein surface information and multimodal feature alignment within this framework. Related research begins with "S

Five schools of machine learning you don't know about Five schools of machine learning you don't know about Jun 05, 2024 pm 08:51 PM

Machine learning is an important branch of artificial intelligence that gives computers the ability to learn from data and improve their capabilities without being explicitly programmed. Machine learning has a wide range of applications in various fields, from image recognition and natural language processing to recommendation systems and fraud detection, and it is changing the way we live. There are many different methods and theories in the field of machine learning, among which the five most influential methods are called the "Five Schools of Machine Learning". The five major schools are the symbolic school, the connectionist school, the evolutionary school, the Bayesian school and the analogy school. 1. Symbolism, also known as symbolism, emphasizes the use of symbols for logical reasoning and expression of knowledge. This school of thought believes that learning is a process of reverse deduction, through existing

SK Hynix will display new AI-related products on August 6: 12-layer HBM3E, 321-high NAND, etc. SK Hynix will display new AI-related products on August 6: 12-layer HBM3E, 321-high NAND, etc. Aug 01, 2024 pm 09:40 PM

According to news from this site on August 1, SK Hynix released a blog post today (August 1), announcing that it will attend the Global Semiconductor Memory Summit FMS2024 to be held in Santa Clara, California, USA from August 6 to 8, showcasing many new technologies. generation product. Introduction to the Future Memory and Storage Summit (FutureMemoryandStorage), formerly the Flash Memory Summit (FlashMemorySummit) mainly for NAND suppliers, in the context of increasing attention to artificial intelligence technology, this year was renamed the Future Memory and Storage Summit (FutureMemoryandStorage) to invite DRAM and storage vendors and many more players. New product SK hynix launched last year

See all articles