Adapting to large low-rank models
Low-rank adaptation of large models is a method of reducing complexity by approximating the high-dimensional structure of large models with low-dimensional structures. The aim is to create a smaller, more manageable model representation that still maintains good performance. In many tasks, redundant or irrelevant information may exist in the high-dimensional structure of large models. By identifying and removing these redundancies, a more efficient model can be created while maintaining original performance, and can use fewer resources to train and deploy.
Low-rank adaptation is a method that can speed up the training of large models while also reducing memory consumption. Its principle is to freeze the weights of the pre-trained model and introduce the trainable rank decomposition matrix into each layer of the Transformer architecture, thereby significantly reducing the number of trainable parameters for downstream tasks. This method is implemented by decomposing the original matrix into the product of two matrices of different ranks. By simply using low-rank matrices for calculations, you can reduce the number of model parameters, increase training speed, and perform well in terms of model quality without increasing inference latency.
Low-rank adaptation example
Taking the GPT-3 model as an example, low-rank adaptation of large models (LoRA) is a method to indirectly train neural networks by optimizing the rank decomposition matrix in dense layers. some dense layer methods. The advantage of LoRA is that only some parameters need to be fine-tuned instead of training the entire model with full parameters, thus improving operational efficiency during deployment. In the GPT-3 model, LoRA only needs to optimize a very low-rank decomposition matrix to achieve performance comparable to full parameter fine-tuning. This method is not only very efficient in terms of storage and calculation, but also can effectively reduce over-fitting problems and improve the generalization ability of the model. Through LoRA, large models can be more flexibly applied to various scenarios, bringing more possibilities to the development of deep learning.
In addition, the idea of low-rank adaptation is simple. It is achieved by adding a bypass next to the original PLM (pre-trained language model), which performs dimensionality reduction and then dimensionality operations to simulate the so-called intrinsic dimensions. During the training process, the parameters of the PLM are fixed, and only the dimensionality reduction matrix A and the dimensionality enhancement matrix B are trained. The input and output dimensions of the model remain unchanged, but the parameters of BA and PLM are superimposed on the output. The dimensionality reduction matrix A is initialized using a random Gaussian distribution, while the dimensionality enhancement matrix B is initialized using a 0 matrix, which ensures that the bypass matrix is still a 0 matrix at the beginning of training.
This idea has some similarities with residual connection, which simulates the process of full finetuning by using bypass updates. In fact, full finetuning can be seen as a special case of LoRA, that is, when r equals k. This means that by applying LoRA to all weight matrices and training all bias terms, while setting the rank r of LoRA to the rank k of the pre-trained weight matrix, we can roughly restore the expressive power of full finetuning. In other words, as the number of trainable parameters increases, the training of LoRA tends to the training of the original model, while the adapter-based method tends to an MLP, and the prefix-based method tends to a model that cannot handle long input sequences. Therefore, LoRA provides a flexible way to balance the number of trainable parameters and the expressive power of the model.
What is the difference between low-rank adaptation and neural network compression?
Low-rank adaptation and neural network compression have some differences in goals and methods.
The goal of neural network compression is to reduce parameters and storage space, reduce computational costs and storage requirements, while maintaining performance. Methods include changing network structure, quantization and approximation, etc.
Neural network compression can be divided into three categories: approximation, quantization and cropping methods.
Approximate methods use matrix or tensor decomposition to reconstruct a small number of parameters and reduce network storage overhead.
2) The main idea of the quantization method is to map the possible values of the network parameters from the real number domain to a finite number set, or to represent the network parameters with fewer bits to reduce network storage overhead.
3) The clipping method will directly change the structure of the network, which can be divided into hierarchical clipping, neuron-level clipping and neural connection-level clipping according to the granularity.
Low-rank adaptation refers to reducing the complexity of the model by reducing the dimensionality of the model parameters, and is usually achieved using techniques such as matrix decomposition. This approach is often used to reduce the computational cost and storage requirements of the model while maintaining the model's predictive capabilities.
In general, neural network compression is a broader concept that covers a variety of methods to reduce the parameters and storage space of neural networks. Low-rank adaptation is a specific technique designed to reduce the complexity of large models by approximating them with low-dimensional structures.
The above is the detailed content of Adapting to large low-rank models. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Image annotation is the process of associating labels or descriptive information with images to give deeper meaning and explanation to the image content. This process is critical to machine learning, which helps train vision models to more accurately identify individual elements in images. By adding annotations to images, the computer can understand the semantics and context behind the images, thereby improving the ability to understand and analyze the image content. Image annotation has a wide range of applications, covering many fields, such as computer vision, natural language processing, and graph vision models. It has a wide range of applications, such as assisting vehicles in identifying obstacles on the road, and helping in the detection and diagnosis of diseases through medical image recognition. . This article mainly recommends some better open source and free image annotation tools. 1.Makesens

In the fields of machine learning and data science, model interpretability has always been a focus of researchers and practitioners. With the widespread application of complex models such as deep learning and ensemble methods, understanding the model's decision-making process has become particularly important. Explainable AI|XAI helps build trust and confidence in machine learning models by increasing the transparency of the model. Improving model transparency can be achieved through methods such as the widespread use of multiple complex models, as well as the decision-making processes used to explain the models. These methods include feature importance analysis, model prediction interval estimation, local interpretability algorithms, etc. Feature importance analysis can explain the decision-making process of a model by evaluating the degree of influence of the model on the input features. Model prediction interval estimate

In layman’s terms, a machine learning model is a mathematical function that maps input data to a predicted output. More specifically, a machine learning model is a mathematical function that adjusts model parameters by learning from training data to minimize the error between the predicted output and the true label. There are many models in machine learning, such as logistic regression models, decision tree models, support vector machine models, etc. Each model has its applicable data types and problem types. At the same time, there are many commonalities between different models, or there is a hidden path for model evolution. Taking the connectionist perceptron as an example, by increasing the number of hidden layers of the perceptron, we can transform it into a deep neural network. If a kernel function is added to the perceptron, it can be converted into an SVM. this one

This article will introduce how to effectively identify overfitting and underfitting in machine learning models through learning curves. Underfitting and overfitting 1. Overfitting If a model is overtrained on the data so that it learns noise from it, then the model is said to be overfitting. An overfitted model learns every example so perfectly that it will misclassify an unseen/new example. For an overfitted model, we will get a perfect/near-perfect training set score and a terrible validation set/test score. Slightly modified: "Cause of overfitting: Use a complex model to solve a simple problem and extract noise from the data. Because a small data set as a training set may not represent the correct representation of all data." 2. Underfitting Heru

In the 1950s, artificial intelligence (AI) was born. That's when researchers discovered that machines could perform human-like tasks, such as thinking. Later, in the 1960s, the U.S. Department of Defense funded artificial intelligence and established laboratories for further development. Researchers are finding applications for artificial intelligence in many areas, such as space exploration and survival in extreme environments. Space exploration is the study of the universe, which covers the entire universe beyond the earth. Space is classified as an extreme environment because its conditions are different from those on Earth. To survive in space, many factors must be considered and precautions must be taken. Scientists and researchers believe that exploring space and understanding the current state of everything can help understand how the universe works and prepare for potential environmental crises

Common challenges faced by machine learning algorithms in C++ include memory management, multi-threading, performance optimization, and maintainability. Solutions include using smart pointers, modern threading libraries, SIMD instructions and third-party libraries, as well as following coding style guidelines and using automation tools. Practical cases show how to use the Eigen library to implement linear regression algorithms, effectively manage memory and use high-performance matrix operations.

Translator | Reviewed by Li Rui | Chonglou Artificial intelligence (AI) and machine learning (ML) models are becoming increasingly complex today, and the output produced by these models is a black box – unable to be explained to stakeholders. Explainable AI (XAI) aims to solve this problem by enabling stakeholders to understand how these models work, ensuring they understand how these models actually make decisions, and ensuring transparency in AI systems, Trust and accountability to address this issue. This article explores various explainable artificial intelligence (XAI) techniques to illustrate their underlying principles. Several reasons why explainable AI is crucial Trust and transparency: For AI systems to be widely accepted and trusted, users need to understand how decisions are made

The application potential of Go language in the field of machine learning is huge. Its advantages are: Concurrency: It supports parallel programming and is suitable for computationally intensive operations in machine learning tasks. Efficiency: The garbage collector and language features ensure that the code is efficient, even when processing large data sets. Ease of use: The syntax is concise, making it easy to learn and write machine learning applications.
